scholarly journals Lubrication and Fatigue Life Evaluation of High-Speed Cylindrical Roller Bearing under Misalignment

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongyu Duan ◽  
Jiawei Song ◽  
Zhijian Wang

This paper developed a coupled model, incorporating the quasistatic model, fatigue life model, and mixed lubrication model, to investigate the effect of misalignment angle on high-speed cylindrical roller bearings. The model is verified by comparing with the published literature results. Then, a parametric analysis is carried out. The results show that as the misalignment increases, the load distribution is basically unchanged, but the fatigue life of the roller bearing decreases due to the variation of contact pressure, and the skewing moment of single roller contact pair increases. Furthermore, the optimal design of roller profile needs to consider the effect of lubrication in order to improve the fatigue life of roller bearings. In general, the optimal crown drop is too small according to the design from the slicing technique.

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4075 ◽  
Author(s):  
Qing Zhang ◽  
Jun Luo ◽  
Xiang-yu Xie ◽  
Jin Xu ◽  
Zhen-huan Ye

As large-scale rotating machines develop toward high rotating speed and high power–weight ratio, skidding damage has become one of the major initial failure modes of cylindrical roller bearings. Therefore, understanding the skidding damage law is an effective way to ensure the safety of machines supported by cylindrical roller bearings. To realize the skidding damage, a high-speed rolling bearing test rig that can simulate the actual operating conditions of aviation bearings was used in this paper, and the skidding damage dynamic behaviors of cylindrical roller bearings were investigated. In addition, to ensure the accuracy of the obtained skidding damage mechanism, the cylindrical roller bearing was carefully inspected by microscopic analysis when the skidding damage occurred. Out results show that instantaneous increases in friction torque, vibration acceleration, and temperature are clearly observed when the skidding damage occurs in the cylindrical roller bearing. Furthermore, under the conditions of inadequate lubrication and light load, the critical speed of skidding damage is rather low. The major wear mechanisms of skidding damage include oxidation wear, abrasive wear, and delamination wear. The white layers are found locally in the inner ring and rollers under the actions of friction heat and shear force.


2004 ◽  
Vol 126 (4) ◽  
pp. 681-689 ◽  
Author(s):  
Niranjan Ghaisas ◽  
Carl R. Wassgren ◽  
Farshid Sadeghi

A six-degree-of-freedom model was developed and used to simulate the motion of all elements in a cylindrical roller bearing. Cage instability has been studied as a function of the roller-race and roller-cage pocket clearances for light-load and high-speed conditions. The effects of variation in inner race speed, misalignment, cage asymmetry, and varying size of one of the rollers have been investigated. In addition, three different roller profiles have been used to study their impact on cage dynamics. The results indicate that the cage exhibits stable motion for small values of roller-race and roller-cage pocket clearances. A rise in instability leads to discrete cage-race collisions with high force magnitudes. Race misalignment leads to a rise in instability for small roller-cage pocket clearances since skew control is provided by the sides of the cage pocket. One roller of larger size than the others causes inner race whirl and leads to stable cage motion for small roller-race clearances without any variation in roller-cage pocket clearance. Cage asymmetry and different roller profiles have a negligible impact on cage motion.


1978 ◽  
Vol 100 (4) ◽  
pp. 486-491 ◽  
Author(s):  
P. G. Goksem ◽  
E. J. Fletcher ◽  
R. A. Hargreaves

A technique for measuring roller speeds in cylindrical roller bearings using a modified laser anemometer has been developed. The technique described does not require any mechanical interference with the roller and cage geometries, and is suitable for high speed testing. The method has been used to measure roller speeds exceeding 15,000 rpm, in a standard 50 mm nominal bore, flanged inner track cylindrical roller bearing, under the conditions of light loads and lubricant starvation. Considerable cage and roller slip is detected only at radial loads less than 100 N, and the degree of slip present is found to be virtually independent of the low lubricant flow rates used in the investigation.


Author(s):  
Van-Canh Tong ◽  
Sun-Woong Kwon ◽  
Seong-Wook Hong

This paper dealt with the fatigue life of cylindrical roller bearings with several significant error sources that may occur during installations. A four degree-of-freedom quasi-static model for cylindrical roller bearings was developed, which took into account potential error sources such as angular misalignment, axial offset, and radial clearance, together with inertial loading by rotational speed and induced moment loads. A 3D contact model was employed to provide contact pressure distributions in rolling elements. The fatigue life of a cylindrical roller bearing was analyzed as a function of angular misalignment under various loading conditions. Then, the fatigue life analysis was extended to the combined effects of radial clearance, axial offset, and the number of rollers, along with angular misalignment. The computational results showed the significance of each error source on fatigue life. They further showed that cylindrical roller bearing fatigue life maximized when the radial clearances were slightly negative, and that it increased almost linearly with the number of rollers.


2020 ◽  
Vol 72 (7) ◽  
pp. 969-976
Author(s):  
Yanbin Liu ◽  
Zhanli Zhang

Purpose This study aims to uncover the influencing mechanism of the tilt angles of the cage pocket walls of the high-speed cylindrical roller bearing on the bearing skidding. Design/methodology/approach A novel cylindrical roller bearing with the beveled cage pockets was proposed. Using the Hertz contact theory and the elastohydrodynamic and hydrodynamic lubrication formulas, the contact models of the bearing were built. Using the multibody kinematics and the Newton–Euler dynamics theory, a dynamics model of the bearing was established. Using the Runge–Kutta integration method, the dynamics simulations and analysis of the bearing were performed. Findings The simulation results show that the effects of the tilt angles of the front and rear walls of the pocket on the bearing skidding are remarkable. Under a 5° tilt angle of the front wall of the pocket and a 10° tilt angle of the rear wall, the bearing skidding can be effectively decreased in the rotational speed range of 10,000-70,000 r/min. Originality/value In this paper, a novel cylindrical roller bearing with the beveled cage pockets was proposed; a dynamics model of the bearing was established; the influence mechanism of the tilt angles of the front and rear walls of the pocket on the bearing skidding was investigated, which can provide fundamental theory basis for optimizing the pocket. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0035/


2013 ◽  
Vol 312 ◽  
pp. 25-28
Author(s):  
Ji Mei Wu ◽  
Yan Chen ◽  
Bo Gao ◽  
Tuan Yong Yi

By means of considering improved Lundberg-Palmgren (L-P) fatigue life theory and rollers and other comprehensive factors, a model of fatigue life is setup for eccentric double row cylindrical roller bearing under rotation. On this basis, the calculation flow chart is given and the fatigue life is calculated. Then come to the conclusions that the fatigue life of bearing is influenced by radial load, rotating speed, radial clearance.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Simon Kabus ◽  
Michael R. Hansen ◽  
Ole Ø. Mouritsen

The accuracy of the fatigue life calculations in rolling bearing simulations is highly dependent on the precision of the roller-raceway contact simulations. Several different methods exist to simulate these pressure distributions and in time domain bearing simulations, where many contacts need evaluation, the simple and time efficient methods are more popular, yielding erroneous life estimates. This paper presents a new six degree of freedom frictionless quasi-static time domain cylindrical roller bearing model that uses high precision elastic half-space theory to simulate the contact pressures. The potentially higher computational demand using the advanced contact calculations is addressed by preprocessing a series of contacts at different centerline approaches and roller tilt angles, which are used for interpolating contact results during time domain simulations. It is demonstrated that this new model allows for simulation of bearing misalignments, roller centrifugal forces, and flange contact induced roller tilt moments, and that the effect of these conditions is directly evaluated in a detailed fatigue life analysis. Finally, the stiffness of the bearing model is validated against existing experimental data with good correlation.


Author(s):  
Pravajyoti Patra ◽  
V Huzur Saran ◽  
SP Harsha

The operating clearance in a bearing influences friction, load zone size and fatigue life of a bearing. Hence, an effort is made to investigate the effect of radial internal clearance on the dynamical behavior of a cylindrical roller bearing system with an unbalance present in the system. The differential equations representing the dynamics of the cylindrical roller bearings have been derived using Lagrange’s equations and solved numerically using the fourth-order Runge-Kutta iterative method. The nonlinear vibration signature has been analyzed due to the clearance and the same is represented by various tools like Acceleration-time plots, Poincaré plots and FFT plots. The approximation method is used to calculate the load distribution and deformation of the individual rollers located at a different position in the load zone, for a preloading/interference fit and positive internal clearance. A response surface method is used to analyze the severity involved in the system due to the combined effect of independent variables like rotor speed, radial load, and radial internal clearance. The observations presented here are not only useful to diagnose the bearing health condition with respect to parametric effects but also exhibit their interactive effects on bearing performance.


2018 ◽  
Vol 178 ◽  
pp. 05012
Author(s):  
Alin Marian Puşcaşu ◽  
Octavian Lupescu ◽  
Ana Bădănac

Bearings are manufactured in a wide variety of types and sizes especially with a single row of rollers, two rows of rollers or more, with cages or roller beside roller. Researches carried out by authors in this paper have followed a comparative analysis between a standard cylindrical roller bearings design and a prototype design using finite element method software's like ANSYS and MESYS. ANSYS is commonly used and enjoyed by an extended use in the structural areas, for analysis. ANSYS it consists of three main phases: Pre-processing, conducting or importing of the solid model system that are to be analyzed, solid meshing design in finite elements, implementation of conditions and loads at the limit, Processing, numeric solving of the characteristic equations behavior of the system and getting the solution, Post-processing, viewing the results in order to analyses system reaction and identification of areas with critical applications. The purpose of the study was to collect data's using two different software's and after to compare them with mathematical results. Using the ANSYS in this purpose it was able to analyses the design of the structure of the cylindrical roller bearing in detail.


Sign in / Sign up

Export Citation Format

Share Document