scholarly journals Genomic Profiling and Functional Analysis of let-7c miRNA-mRNA Interactions Identify SOX13 to Be Involved in Invasion and Progression of Pancreatic Cancer

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shannon R. Nelson ◽  
Sandra Roche ◽  
Maura Cotter ◽  
Pablo Anton Garcia ◽  
Daniela Reitmeier ◽  
...  

Background. Pancreatic cancer is a devastating disease; its lethality is related to rapid growth and tendency to invade adjacent organs and metastasize at an early stage. Objective. The aim of this study was to identify miRNAs and their gene targets involved in the invasive phenotype in pancreatic cancer to better understand the biological behaviour and the rapid progression of this disease. Methods. miRNA profiling was performed in isogenic matched high invasive and low-invasive subclones derived from the MiaPaCa-2 cell line and validated in a panel of pancreatic cancer cell lines, tumour, and normal pancreas. Online miRNA target prediction algorithms and gene expression arrays were used to predict the target genes of the differentially expressed miRNAs. miRNAs and potential target genes were subjected to overexpression and knockdown approaches and downstream functional assays to determine their pathological role in pancreatic cancer. Results. Differential expression analysis revealed 10 significantly dysregulated miRNAs associated with invasive capacity (Student’s t-tests; P value <0.05; fold change = ±2). The expression of top upregulated miR-135b and downregulated let-7c miRNAs correlated with the invasive abilities of eight pancreatic cancer cell lines and displayed differential expression in pancreatic cancer and adjacent normal tissue specimens. Ectopic overexpression of let-7c decreased proliferation, invasion, and colony formation. Integrated analysis of miRNA-mRNA using in silico algorithms and experimental validation databases identified four putative gene targets of let-7c. One of these targets, SOX13, was found to be upregulated in PDAC tumour compared with normal tissue in TCGA and an independent data set by qPCR and immunohistochemistry. RNAi knockdown of SOX13 reduced the invasion and colony formation ability of pancreatic cancer cells. Conclusion. The identification of key miRNA-mRNA gene interactions and networks provide potential diagnostic and therapeutic strategies for better treatment options for pancreatic cancer patients.

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 563 ◽  
Author(s):  
Robert G. Goetze ◽  
Soeren M. Buchholz ◽  
Ning Ou ◽  
Qinrong Zhang ◽  
Shilpa Patil ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to standard chemo- and radiotherapy. Recently, a new class of non-platinum-based halogenated molecules (called FMD compounds) was discovered that selectively kills cancer cells. Here, we investigate the potential of 1,2-Diamino-4,5-dibromobenzene (2Br-DAB) in combination with standard chemotherapy and radiotherapy in murine and human PDAC. Methods: Cell viability and colony formation was performed in human (Panc1, BxPC3, PaTu8988t, MiaPaCa) and three murine LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) pancreatic cancer cell lines. In vivo, preclinical experiments were conducted in LSL-KrasG12D/+;p48-Cre (KC) and KPC mice using 2Br-DAB (7 mg/kg, i.p.), +/- radiation (10 × 1.8 Gy), gemcitabine (100 mg/kg, i.p.), or a combination. Tumor growth and therapeutic response were assessed by high-resolution ultrasound and immunohistochemistry. Results: 2Br-DAB significantly reduced cell viability in human and murine pancreatic cancer cell lines in a dose-dependent manner. In particular, colony formation in human Panc1 cells was significantly decreased upon 25 µM 2Br-DAB + radiation treatment compared with vehicle control (p = 0.03). In vivo, 2Br-DAB reduced tumor frequency in KC mice. In the KPC model, 2Br-DAB or gemcitabine monotherapy had comparable therapeutic effects. Furthermore, the combination of gemcitabine and 2Br-DAB or 2Br-DAB and 18 Gy irradiation showed additional antineoplastic effects. Conclusions: 2Br-DAB is effective in killing pancreatic cancer cells in vitro. 2Br-DAB was not toxic in vivo, and additional antineoplastic effects were observed in combination with irradiation.


1996 ◽  
Vol 270 (5) ◽  
pp. R1078-R1084 ◽  
Author(s):  
J. P. Smith ◽  
A. Shih ◽  
Y. Wu ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptides gastrin and cholecystokinin (CCK) stimulate growth of human pancreatic cancer through a CCK-B/gastrin- like receptor. In the present study we evaluated whether growth of human pancreatic cancer is endogenously regulated by gastrin. Immunohistomical examination of BxPC-3 cells and tumor xenografts revealed specifc gastrin immunoreactivity. Gastrin was detected by radioimmunoassay in pancreatic cancer cell extracts and in pancreatic cancer cell extracts and in the growth media. With use of reverse-transcriptase polymerase chain reaction gastrin gene expression was detected in both cultured BxPC-3 cancer cells and transplanted tumors, as well as seven addition human pancreatic cancer cell lines. Growth of BxPC-3 human pancreatic cancer cell in serum-free medium was inhibited by the addition of the CCK-B/gastrin receptor antagonist L-365,260, and gastrin treatment reversed the inhibitory effect of the antagonist. A selective gastrin antibody (Ab repressed growth of BxPC-3 cells. Gastrin immunoreactivity was detected in fresh human pancreatic cancer specimens but not in normal human pancreatic tissue. These data provide the first evidence that growth of a human pancreatic cancer is tonically stimulated by the autocrine production of gastrin. Evidence for the ubiquity of this system was provided by the detection of gastrin gene expression in multiple human pancreatic cancer cell lines and detection of gastrin in cell lines and fresh pancreatic tumors.


Sign in / Sign up

Export Citation Format

Share Document