scholarly journals Finite Element Method and Von Mises Investigation on Bone Response to Dynamic Stress with a Novel Conical Dental Implant Connection

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Luca Fiorillo ◽  
Marco Cicciù ◽  
Cesare D’Amico ◽  
Rodolfo Mauceri ◽  
Giacomo Oteri ◽  
...  

The bioengineering and medical and biomedical fields are ever closer, and they manage to obtain surprising results for the development of new devices. The field of simulations and studies in silica has undergone considerable development in recent years, favoring the advancement of medicine. In this manuscript, a study was carried out to evaluate the force distribution on the implant components (In-Kone® Universal) and on the peri-implant tissues subjected to loading. With the finite element analysis and the Von Mises method, it was possible to evaluate this distribution of forces both at 0 degrees (occlusal force) and at 30 degrees; the applied force was 800 N. The obtained results on this new type of connection and on all the implant components are satisfactory; the distribution of forces appears optimal even on the peri-implant tissues. Surely, studies like this help to obtain ever more performing devices, improving both the clinic and the predictability of rehabilitations.

2013 ◽  
Vol 38 (5) ◽  
pp. 363-368
Author(s):  
Neelesh Kumar

Background:Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range.Objectives:This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel.Study design:The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation.Methods:Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization.Results:The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye–adapter junction in static and dynamic analyses, respectively.Conclusions:Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost.Clinical relevanceResearch investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter.


2014 ◽  
Vol 644-650 ◽  
pp. 455-458
Author(s):  
Yao Ye ◽  
Yong Hai Wu

Frame has important effects on the performance of the whole of heavy semi-trailer. A heavy semi-trailer frame is analyzed and researched on in the finite-element way in this article. The frame of 3D geometric model is established by using Pro/E. And it was imported into the Hypermesh to establish frame finite element model. Frame are calculated by using ANSYS solver in bending condition, emergency braking conditions and rapid turn conditions of stress and deformation conditions. The computational tools and methods we used provide the new type of frame and development with a reference method to refer to in this paper.


2021 ◽  
Author(s):  
Yu-Hsuan Chen ◽  
Kuo-Min Su ◽  
Ming-Tzu Tsai ◽  
Chi-Kung Lin ◽  
Cheng-Chang Chang ◽  
...  

Abstract PurposeIn some cases where operative deliveries are required with vacuum extractor, and obstetricians could choose the vacuum extractor to facilitate the process smoother and safer. However, there is no related biomechanical literature about the influences of vacuum extractors fabricated from different materials and pressures of vacuum on the fetal head. Hence, we utilized the finite element method to investigate the influences of vacuum extractors manufactured from different materials on the fetal head under various extractive pressures.MethodsFirst, the finite element analysis models of vacuum extractor and fetal head were established. The vacuum extractor model was designed as a hemispherical shape and we compared silicone rubber and stainless steel for the materials of vacuum extractor. Subsequently, four different vacuum pressures were applied as the factors for investigation—500-cm H2O, 600-cm H2O, 700-cm H2O, and 800-cm H2O. Finally, we observed and analyzed the reactive force on the fetal head, von Mises stress of vacuum extractor, and von Mises stress on the skull of fetal head to evaluate the influences of vacuum extractors of different materials under different pressures. ResultsThe results demonstrated that different vacuum pressures had only a slight difference of influences on the fetal head. The use of stainless-steel vacuum extractors caused a relatively larger reactive force (358.04–361.37 N) and stress (13.547–13.675 MPa) on the fetal head. ConclusionsNon-metallic or relatively softer materials could be selected when using a vacuum extractor for operative delivery to avoid complications such as scalp scratch, and even cephalohematoma and intracerebral hemorrhage.


2021 ◽  
Vol 272 ◽  
pp. 02017
Author(s):  
Xiaomeng Zhang ◽  
Weilun Ding ◽  
Qingying Ren ◽  
Wenting Liu ◽  
Qiaji Wang

In this paper, a new type of prefabricated concrete structure system is put forward, and a new type of bi-directional multi-ribbed floor is put forward in combination with this system.Finite element analysis is carried out on the floor, and its mechanical properties are analyzed, and compared with the test hysteresis curve, the rationality and correctness of the finite element analysis are obtained.


Author(s):  
Talip Çelik

The purpose of this study is to examine the effects of screw preload values on the bone-plate system. The preload value was taken differently in the literature range from 50 N to 3000 N. These preload value were examined in this study. The finite element method was used to calculate the strain and stress on the models. The long bone, plate and screws were modeled as 3D using CAD software. The finite element models were created using Ansys Workbench software. The convergence and validation study were made for the correct results. The 400 N axial load was applied to the proximal end of bone. The distal end of the bone fixed for boundary condition. The preload values were applied to the screws differently. The results of the finite element analysis were compared and evaluated. The results showed that when the preload values increased, the von Mises stresses and strains on the bone and plate system increased. The critical preload value of the screw is the 500 N. The upper values of this critical value can be damaged bone and plate system. The critical region of the bone is the holes where the screw inserted. In conclusion, the preload values of the screw should not exceed the 500 N for the successful fixation.


2014 ◽  
Vol 487 ◽  
pp. 378-384
Author(s):  
Feng Yi Lu ◽  
Xin Xin Liu ◽  
Ge Ning Xu

In view of the problem that new type crushing ripper installation of tamping equipment in circulation under the action of different load working multiple cases may occur structural fatigue damage, analysis of its force characteristic, establishment ripper rack compression bending component model, according to the working condition of the most unfavorable load combinations, using the allowable stress method to calculate structural fatigue strength; the combined effect of road load spectrum and vibrating load is also taken into consideration, then statics analysis and fatigue analysis of new type crushing ripper are calculated with the finite element analysis software Ansys Workbench. The results show that theoretical calculations are in accordance with the finite element analysis results, it evidences that the fatigue strength analysis method of crushing ripper is feasible and correct. It provides a reference for the anti-fatigue optimization design of new type crushing ripper, to guarantee its meet the operational requirements under of bad conditions.


2012 ◽  
Vol 157-158 ◽  
pp. 714-718
Author(s):  
Quan Yuan ◽  
Hai Bo Ma ◽  
Cheng Rui Zhang ◽  
Hua Cong ◽  
Xin Ye

This paper constructs four types of bioprosthetic heart valve’s parametric model via computer aided design, a series of accurate parameters of the bioprosthetic heart valve, such as radius of the sutural ring, height of the supporting stent and inclination of the supporting stent are determined. The finite element method is used to analyze the mechanical properties of the bioprosthetic heart valve in which geometric non-linearity and material non-linearity are all taken into account. The finite element analysis results show that the shape of the bioprosthetic has a significant effect on the mechanical performance of the valve. The stress distribution of ellipsoidal valve leaflets is comparatively reasonable. It has lower peak von-Mises, smaller stress concentration area than the other three types of valve leaflets. This work is very helpful to manufacture valvular leaflets with reasonable shapes and to prolong the lifetime of the bioprosthetic heart valve.


2015 ◽  
Vol 734 ◽  
pp. 816-821
Author(s):  
Chang Qi Liu ◽  
Yu Fa Xu ◽  
Quan Feng Li ◽  
Jin Hua Bian

In order to increase the cost and material conditions as little as possible for improving the efficiency of the motor, and reduce the losses of the motor. This paper have YE3-132S-6X3 super-efficient motor loss analysis first. According to the characteristics of its loss analysis, this paper change the motor slot coordination, and through the finite element analysis, further has carried on the design of slot type and winding. Finally, in order to further reduce iron loss, this paper uses the new type of silicon steel, and then by comparing with the finite element analysis and experimental tests found YE3-132S-6X3 motor efficiency have achieved the purpose of the ultra-super efficient, and other performance parameters can also meet the requirements.


2013 ◽  
Vol 367 ◽  
pp. 165-168 ◽  
Author(s):  
Oldrich Sucharda ◽  
Jiri Brozovsky

The paper describes and compares selected failure and plasticity conditions of concrete. The CEB-FIB condition, the von Mises plasticity condition with modification for concrete and the Chen-Chen condition are studied. The conditions are compared in 2D and two of these conditions are also used for numerical analysis of a deep beam. The software BSA is chosen for the analysis in the paper. The software BSA is based on the finite element method.


2014 ◽  
Vol 40 (5) ◽  
pp. 525-532 ◽  
Author(s):  
Habib Hajimiragha ◽  
Mohammadreza Abolbashari ◽  
Saeed Nokar ◽  
AmirHossein Abolbashari ◽  
Mehrdad Abolbashari

The present study was done to evaluate the effects of different types of abutments on the rate and distribution of stress on the bone surrounding the implant by dynamic finite element analysis method. In this study two ITI abutment models—one-piece and multi-piece—along with fixture, bone, and superstructure have been simulated with the help of company-made models. The maximum Von Mises stress (MVMS) was observed in the distobuccal area of the cortical bone near the crest of implant in two implant models. In the multi-piece abutment, MVMS was higher than the one-piece model (27.9 MPa and 23.3 MPa, respectively). Based on the results of this study, it can be concluded that type of abutment influences the stress distribution in the area surrounding the implant during dynamic loading.


Sign in / Sign up

Export Citation Format

Share Document