A Ultra -Super Efficiency Induction Motor Based on the Finite Element Analysis

2015 ◽  
Vol 734 ◽  
pp. 816-821
Author(s):  
Chang Qi Liu ◽  
Yu Fa Xu ◽  
Quan Feng Li ◽  
Jin Hua Bian

In order to increase the cost and material conditions as little as possible for improving the efficiency of the motor, and reduce the losses of the motor. This paper have YE3-132S-6X3 super-efficient motor loss analysis first. According to the characteristics of its loss analysis, this paper change the motor slot coordination, and through the finite element analysis, further has carried on the design of slot type and winding. Finally, in order to further reduce iron loss, this paper uses the new type of silicon steel, and then by comparing with the finite element analysis and experimental tests found YE3-132S-6X3 motor efficiency have achieved the purpose of the ultra-super efficient, and other performance parameters can also meet the requirements.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yaqin Lu ◽  
Hongkun Shang ◽  
Zhengnong Li ◽  
Kejian Ma ◽  
Lan Jiang

A new type of U-shaped steel-concrete composite floor is analyzed in detail. The experimental test and finite element analysis of the floor are conducted to study the natural frequency and serviceability characteristics of the new composite floor structure. The natural frequency of the floor is measured under the environmental random vibration stimulating method, and the peak acceleration of the floor is measured under pedestrian-induced load. The experimental test results show that the U-shaped steel-concrete composite floor has better antiseismic behaviors and meet the specified serviceability requirements. The finite element analysis results indicate the constraints have a great impact on the calculation results. The experimental tests and FEM results of the floor are compared based on the modal assurance criterion, and the results are in good agreement. The experimental test acceleration curves demonstrate that the peak values meet the requirements of Chinese specification.


2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


2021 ◽  
Vol 272 ◽  
pp. 02017
Author(s):  
Xiaomeng Zhang ◽  
Weilun Ding ◽  
Qingying Ren ◽  
Wenting Liu ◽  
Qiaji Wang

In this paper, a new type of prefabricated concrete structure system is put forward, and a new type of bi-directional multi-ribbed floor is put forward in combination with this system.Finite element analysis is carried out on the floor, and its mechanical properties are analyzed, and compared with the test hysteresis curve, the rationality and correctness of the finite element analysis are obtained.


Author(s):  
Eyassu Woldesenbet ◽  
Haftay Hailu

The need for the rehabilitation of bridges and structures is becoming more apparent as the number of deficient civil structure grows and the cost of replacement is becoming prohibitive. These leads to the search of alternative methods, such as rehabilitation, to put the deteriorated structures back to normal operation with the least possible cost. One such method is the use of composite plates adhesively bonded to concrete as reinforcement and to prevent the propagation of crack within the concrete structure. In this study the load transfer and the resulting stress distribution in the composite-concrete adhesion system is investigated using the finite element method. The effects of the different bond parameters are studied using the finite element. In addition, results of the finite element analysis are proved to be in agreement with the analytical solution of shear stress distribution in the adhesion layer that was developed in previous studies by the authors.


2014 ◽  
Vol 487 ◽  
pp. 378-384
Author(s):  
Feng Yi Lu ◽  
Xin Xin Liu ◽  
Ge Ning Xu

In view of the problem that new type crushing ripper installation of tamping equipment in circulation under the action of different load working multiple cases may occur structural fatigue damage, analysis of its force characteristic, establishment ripper rack compression bending component model, according to the working condition of the most unfavorable load combinations, using the allowable stress method to calculate structural fatigue strength; the combined effect of road load spectrum and vibrating load is also taken into consideration, then statics analysis and fatigue analysis of new type crushing ripper are calculated with the finite element analysis software Ansys Workbench. The results show that theoretical calculations are in accordance with the finite element analysis results, it evidences that the fatigue strength analysis method of crushing ripper is feasible and correct. It provides a reference for the anti-fatigue optimization design of new type crushing ripper, to guarantee its meet the operational requirements under of bad conditions.


2016 ◽  
Vol 10 (1) ◽  
pp. 668-676
Author(s):  
Wei Shi ◽  
Xiao Sanxia ◽  
Jiang Guoping

A new type of connection node filled with steel tubular column is proposed for the frame structure of concrete. In this paper, the mechanical properties and failure mechanism are studied. As shown by the finite element analysis results, the hysteresis curve attains the full standard, indicating that the joints possess good deformation performance, as well as good bearing capacity, ductility and energy dissipation capacity. Based on the results of the finite element analysis, the experimental study of this type of node is carried out. Meanwhile, a series of experiments are conducted to enhance the length of the steel plate, the effectiveness of the steel plate and the thickness of the protective layer of the steel plate.


2014 ◽  
Vol 703 ◽  
pp. 436-439
Author(s):  
Si Zeng ◽  
Yu Xin Sun ◽  
Yi Du ◽  
Huang Qiu Zhu ◽  
Xian Xing Liu

Abstract. In this paper, a new type of maglev wind generator is proposed. The working principle, structure characteristics and the finite element analysis of the new maglev wind turbine are introduced. The generator consists of a 2 degrees of freedom (DOF) maglev generator and a 3 DOF hybrid magnetic bearing. An eight poles active magnetic bearing with external rotor is added into traditional direct-drive permanent magnet wind generator. The rotor ring is hollowed, which can leads to the self-decoupling for magnetic fields between power generation system and suspension system. Compared with the conventional maglev wind generator, the proposed generator not only shows the same advantages of traditional maglev wind turbines, but also improves the axial length utilization and decrease the cost of motor control.


2017 ◽  
Vol 25 (1) ◽  
pp. 117-128
Author(s):  
C.F. Tan ◽  
S.A. Shamsuddin ◽  
M.H. Shafie

The paper discusses the knowledge on the behaviour of T-frame under specific loading will be obtained by experimental methods in order to investigate the deflection of the vehicle B-pillar or T-frame. In addition, a series of T-frame were designed with inner diaphragm at various location in the sill member in order to investigate the effect of inner diaphragm and noncontinuous closed hat section in the sill member. Lastly, the results from the experimental tests were compared with the finite element analysis results to demonstrate the effectiveness of the inner diaphragm in the automotive B-pillar.  


2021 ◽  
Vol 342 ◽  
pp. 06003
Author(s):  
Sándor Szirbik ◽  
Zoltán Virág

This paper is devoted to the modal analysis and buckling of a stiffened plate with simple supported conditions within the framework of shell theory. The main objective of the finite element analysis is to investigate the natural frequencies of this stiffened structure subjected to uniaxial compression on two opposite edges of the plate. In this study, the numerical analysis is performed for such a design of the stiffed plate which has already been optimized for uniaxial compression, some design variables and the cost of welding, and the objective function to be minimized is defined as the material cost. The various Young’s modulus of the base plate and the stiffeners are given thus assuming that the plate parts (the base plate and ribs) were made of different steel materials.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1277-1280
Author(s):  
Zhuang Nan Zhang ◽  
Zhen Dong Tan ◽  
Guo Chang Li

This paper puts a form of reinforcement with used finite element methods to carry on the numerical simulation of a new type reinforcement form of light steel ceiling. Compared with the ordinary ceiling, the new reinforcement form of light steel ceiling can greatly improve the capacity of the ceiling sideways resistance with the overall strong stiffness from the simulation results.


Sign in / Sign up

Export Citation Format

Share Document