The Finite Element Analysis of a Heavy Semi-Trailer Frame Based on ANSYS

2014 ◽  
Vol 644-650 ◽  
pp. 455-458
Author(s):  
Yao Ye ◽  
Yong Hai Wu

Frame has important effects on the performance of the whole of heavy semi-trailer. A heavy semi-trailer frame is analyzed and researched on in the finite-element way in this article. The frame of 3D geometric model is established by using Pro/E. And it was imported into the Hypermesh to establish frame finite element model. Frame are calculated by using ANSYS solver in bending condition, emergency braking conditions and rapid turn conditions of stress and deformation conditions. The computational tools and methods we used provide the new type of frame and development with a reference method to refer to in this paper.

2014 ◽  
Vol 953-954 ◽  
pp. 1509-1512
Author(s):  
Xiao Li Li ◽  
Ke Li

The finite element analysis of the underground buried pipes were done by being used ANSYS software. In order to improve or replace the traditional calculation method, basic information on buried pipeline without frusta was set up , stress and deformation were analyzed, a finite element calculation model was established.


2011 ◽  
Vol 383-390 ◽  
pp. 2862-2867
Author(s):  
Yan Qi Li ◽  
Ming Tao Liu ◽  
Guang Cai Tian

This paper is aimed to analyse contact stress of ring-plate indexing cam mechanism which is a new type of indexing cam mechanism. A contact finite element model of the cam and the pin gear is established with the commercial software of MATLAB and ANSYS. With the finite element analysis, the contact stress of the cam and the pin gear is predicted in one motion cycle. On the basis of the finite element analysis, the force and the position of maximum stress are obtained. The conclusion proposed here is reliable to instruct the design of ring-plate indexing cam mechanism.


2016 ◽  
Vol 835 ◽  
pp. 632-638
Author(s):  
Zhi Hong Wang ◽  
Jin Biao Wu ◽  
Jia Wu Liu

A high clearance self-propelled sprayer was designed, and a 3D model of sprayer frame was built with CATIA. Its finite element model was built by using Hypermesh, and it was imported to ABAQUS for finite element analysis. The analysis researched the stress and deformation of frame under four typical conditions of constant-velocity, torsion, emergency braking and emergency turning. The weak region of strength in the variable track mechanism was found, and a size optimization research was carried to the square pipe of the variable track mechanism. The result showed that the maximum stress of frame after optimization decreased obviously, and the distribution of stress became much more reasonable. The optimization ensured the reliability of the frame design.


2014 ◽  
Vol 494-495 ◽  
pp. 345-348 ◽  
Author(s):  
Xin Xin Wang ◽  
Xiao Hong Lu ◽  
Guang Hao Xu ◽  
Feng Chen Wang

Because of the differences in spindle speed and extended length of micro milling cutter, Tool life and machining surface quality vary markedly. Therefore, a geometric model of carbide end mill whose diameter is 0.2mm is built. With free meshing method, meshing density is set up reasonably, which ensure the rationality of the built finite element model. On the premise of considering the extended length of the micro milling cutter, apply linear load on the main cutting edge and front-cutting edge, carry out the deformation and stress analysis using finite element software. Applying different spindle speeds under four extended lengths, through comparing maximum stress and strain under four extended lengths, change rules are summarized and the extended lengths of the tool suited for micro-milling are achieved.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2020 ◽  
Vol 70 (1) ◽  
pp. 41-46
Author(s):  
Yaoji Deng ◽  
Youqun Zhao ◽  
Mingmin Zhu ◽  
Zhen Xiao ◽  
Qiuwei Wang

To overcome the shortcomings of traditional rigid road wheel, such as poor damping effect and low load-bearing efficiency, a new type of flexible road wheel, having a unique suspension-bearing mode, was introduced. The three-dimensional nonlinear finite element model of rigid and flexible road wheel, considering the triple nonlinear characteristics of geometry, material and contact, is established for numerical investigation of static loading performance. The accuracy of the finite element model of the rigid and flexible road wheel is verified by static loading experiment. The static loading performance of the rigid and flexible road wheels is numerically analyzed. The influence of vertical load on maximum stress and deformation of the rigid and flexible wheels is also studied. The results show that the contact pressure uniformity of the flexible road wheel is better than that of the rigid road wheel under the static vertical load, but the maximum stress and deformation of the flexible road wheel are greater than that of the rigid road wheel. However, this problem can be solved by increasing the number of hinge sets and optimising the joints. The research results provide theoretical basis for replacing rigid road wheel with flexible road wheel, and also provide reference for structural optimisation of flexible road wheel.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zhao Xu ◽  
Zezhi Rao ◽  
Vincent J. L. Gan ◽  
Youliang Ding ◽  
Chunfeng Wan ◽  
...  

Mesh generation plays an important role in determining the result quality of finite element modeling and structural analysis. Building information modeling provides the geometry and semantic information of a building, which can be utilized to support an efficient mesh generation. In this paper, a method based on BRep entity transformation is proposed to realize the finite element analysis using the geometric model in the IFC standard. The h-p version of the finite element analysis method can effectively deal with the refined expression of the model of bending complex components. By meshing the connection model, it is suggested to adopt the method of scanning to generate hexahedron, which improves the geometric adaptability of the mesh model and the quality and efficiency of mesh generation. Based on the extension and expression of IFC information, the effective finite element structure information is extracted and extended into the IFC standard mode. The information is analyzed, and finally the visualization of finite element analysis in the building model can be realized.


2018 ◽  
Vol 195 ◽  
pp. 02008
Author(s):  
Yanuar Setiawan ◽  
Ay Lie Han ◽  
Buntara Sthenly Gan ◽  
Junaedi Utomo

The use of castellated beams has become more popular in the last two decades. The main idea for the use of these types of steel beams is to reduce their self-weight by providing openings in the web of wide flange (WF) or I sections. Numerous research on castellated beams has been conducted, the majority of the studies aimed to optimize the opening size and the shape configuration of the openings. A numerical analysis of castellated beams with oval openings was performed in this study. The sections under investigation had variations in the height-to-length ratios of the beam. The Do to D and b to Do ratios were kept at a constant. The D value was defined as the height of the beam, while Do is the height of the opening, and b is the width of the opening. The numerical analysis was performed by the finite element analysis using the STRAND7 software. The numerical model was further validated to the experimental data. The results showed that the developed finite element model resulted in a very good representation to the actual behavior of the sections.


2013 ◽  
Vol 273 ◽  
pp. 588-592
Author(s):  
Zhi Yuan Yan ◽  
Dong Mei Wu ◽  
Li Tao Zhang ◽  
Jun Zhao

In order to obtain high-quality analytical results of the finite element model, it is essential to construct a three dimensional geometric model. The paper reconstructed an accurate three dimensional geometric model of cervical spine segments (C4-C7). The process of reconstruction included three-dimensional reconstruction, smooth processing, contour generation, grid generation and fitting surface. Moreover, the result of reconstruction was evaluated ultimately. The model was validated to be smooth and reasonable, and could meet the requirements of finite element analysis. The method is not merely applied to reconstruct the geometric model of the cervical spine. It is a way to construct the model of the skeletal system of the human body.


Sign in / Sign up

Export Citation Format

Share Document