scholarly journals Study on Fuzzy Control for Air-To-Water Heat Pumps Connected to a Residential Floor Heating System

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Duhui Jiang ◽  
Cui Hongshe

Reducing the supplied water temperature of the air-to-water heat pump to meet the building heat demand can greatly improve the efficiency of the heat pump unit and give full play to the advantages of energy saving and comfort of the floor radiant heating system with an air-to-water heat pump. Based on the variation of ambient temperature and ambient temperature, the domain of fuzzy control is optimized by particle swarm optimization (PSO), and the optimal fuzzy control table is established to adjust the supplied water temperature of the air-to-water heat pump. A transient simulation model of floor radiant heating system for a typical 100 m2 building in China cold regions was developed by using TRNSYS software, and this heating system is simulated by the fuzzy control variable supplied water temperature and the conventional 45°C supplied water control in the whole heating season. The simulation results show that the system energy consumption is saved by 15.9% and SCOP increased by 18.9% by using this fuzzy control compared with the conventional 45°C supplied water control in the whole heating season under the premise of ensuring stable room temperature. Comparing conventional 45°C supplied water control, the fuzzy control can reduce CO2 emissions by 4.3 kg/m2, 4.7 kg/m2, 5.6 kg/m2, 5.2 kg/m2, and 4.9 kg/m2 in Zhengzhou, Qingdao, Beijing, Taiyuan, and Zhangjiakou, respectively.

1983 ◽  
Vol 105 (4) ◽  
pp. 446-453 ◽  
Author(s):  
D. J. Roeder ◽  
R. L. Reid

The series solar-assisted heat pump heating system with ground-coupled storage in The University of Tennessee’s TECH House I in Knoxville, Tennessee, has been modeled using TRNSYS/GROCS and was compared to the experimental performance for the 1980–81 heating season. The simulation results were within 8 percent of the experimental measurements. Both simulation and experimental results showed that ground coupling of thermal storage led to the elimination of electric resistance backup heat and a large reduction in the peak heating demand of the house. Results of a parametric study showed that, in general, a ground-coupled storage tank performs better than a storage tank placed outdoors in the Knoxville area. Application of a next generation heat pump resulted in the most significant impact on the seasonal performance factor. As expected, higher performance collectors and larger collector areas led to higher system seasonal performance. An economic analysis showed that the series solar heat pump system cannot economically compete with the stand-alone heat pump system in the Knoxville area.


2014 ◽  
Vol 541-542 ◽  
pp. 752-755
Author(s):  
Jun Yang ◽  
Guo Zhong Ding ◽  
Xiao Yan Zhang ◽  
Shui Ming Shu ◽  
Jun Yi Tan

Studies on air source heat pump (ASHP) transfer to high temperature, the performance of air source heat pump greatly depends on the ambient temperature. Aimed at the prototype aeroplane of high temperature air source heat pump, New mixed-refrigerant M-R was adopted, and a simulation was made under a standard conditions with Aspen Plus software. And the results was validated by the experiments. The results showed that a well trend between theory and experiments. In addition, experimental investigation of high temperature air source heat pump were carried out at different conditions. The COP was 1.15, the discharge temperature of compressor was 108.6°Cwhen the outlet water temperature was 85.1°C. The heating capacity is superior. This achieved a leading level at home and abroad.


Author(s):  
Le Minh Nhut ◽  
Tran Quang Danh

Hot water is an important factor in domestic life and industrial development. Today, the heat pump is used to produce hot water more and more popular because it has many advantages of saving energy compared to the method of producing hot water by the hot water electric heater. The main aim of this study is to evaluate of the coefficient of performance (COP) of the small hot water heat pump using refrigeration R410A and R32. The capacity of both hot water heat pump is similar, one using new refrigerant R32 and other using refrigerant R410A. These heat pumps were designed and installed at the Ho Chi Minh City University of Technology and Education to evaluate the COP for the purpose of application the new refrigerant R32 for hot water heat pump. The compressor capacity is 1 Hp, the volume of hot water storage tank is of 100 liters and is insulated with thickness of 30 mm to reduce the heat loss to invironment, the required hot water temperature at the outlet of condenser is 50 oC, and the amount of required hot water is 75 liters per batch and is controlled by float valve. The experimental results indicate that the COP of the heat pump using the new refrigerant R32 is higher than heat pump using refrigerant R410A from 9% to 15% when the experimental conditions such as ambient temperature, initial water flow rate through the condenser and the required temperature of hot water were the same. In addition, the effect of the ambient temperature, initial water temperature and water flow rate were also evaluated.


Author(s):  
D. Kovalchuk ◽  
A. Mazur ◽  
S. Hudz

The main part of heating systems and domestic hot water systems are based on the natural gas boilers. Forincreasing the overall performance of such heating system the condensation gas boilers was developed and are used. Howevereven such type of boilers don't use all energy which is released from a fuel combustion. The main factors influencing thelowering of overall performance of condensation gas boilers in case of operation in real conditions are considered. Thestructure of the developed mathematical model allowing estimating the overall performance of condensation gas boilers(CGB) in the conditions of real operation is considered. Performace evaluation computer experiments of such CGB during aheating season for real weather conditions of two regions of Ukraine was made. Graphic dependences of temperatureconditions and heating system effectiveness change throughout a heating season are given. It was proved that normal CGBdoes not completely use all calorific value of fuel, thus, it isn't effective. It was also proved that the efficiency of such boilerssignificantly changes during a heating season depending on weather conditions and doesn't reach the greatest possible value.The possibility of increasing the efficiency of CGB due to hydraulic division of heating and condensation sections and use ofthe vapor-compression heat pump for deeper cooling of combustion gases and removing of the highest possible amount ofthermal energy from them are considered. The scheme of heat pump connection to the heating system with a convenient gasboiler and the separate condensation economizer allowing to cool combustion gases deeply below a dew point and to warm upthe return heat carrier before a boiler input is provided. The technological diagram of the year-round use of the heat pump forhot water heating after the end of heating season, without gas use is offered.


2016 ◽  
Vol 19 ◽  
pp. 20-26 ◽  
Author(s):  
Moritz Hein ◽  
Ralf Stöber ◽  
Gerhard Fischerauer ◽  
Johannes Bürner ◽  
Jörg Franke ◽  
...  

The central heating units of buildings are typically replaced every 20 to 30 years. There exists a variety of solutions for fuel-and gas-based units, but it would be advantageous to be able to use renewable energies. This would become possible by the combination of planar carbon-fiber-based infrared (IR) radiant heating foils with a heat pump providing hot water. The main goal of our proposed overall control strategy is to increase the energy efficiency while maintaining the thermal comfort for the residents. We examined the electromagnetic compatibility of the heating foils and simulated the relative contributions of the amount of energy provided by the heat pump and by the heating foils to obtain a maximum coefficient of performance for the combined heating system.


2014 ◽  
Vol 590 ◽  
pp. 599-603
Author(s):  
Teer Andrus Koiv ◽  
Mariin Ling ◽  
Kaspar Tennokese

This article gives an overview of the study on using the air-to-water heat pump (A&WHP) for heating buildings in cold climate regions. The study was conducted in a relatively cold region (59°N), where the ambient temperature during the winter usually falls below-20°C. Despite the fact the COP of the air-to-water heat pump in the winter period was 2.5 on average and during the heating season of 2013/2014 the additional energy requirement was less than 3%.


2013 ◽  
Vol 732-733 ◽  
pp. 152-155
Author(s):  
Qiang Wang ◽  
Zhao Lei Ding ◽  
Hai Yun Wang ◽  
Wen Chao Lv

A grey box model of screw ground source heat pump unit has been established and operating characteristics of the unit using R22 refrigerants were simulated. The effects on refrigerating capacity, heating capacity, power consumption of the compressor and COP on conditions of cooling and heating have been analyzed with different inlet water temperature of evaporator and inlet water temperature of condenser. Results show that main factor which affecting COP of heat pump unit is inlet water temperature of condenser. The change of refrigerating capacity and heating capacity are mainly caused by inlet water temperature of evaporator. Measures can be done to decrease the inlet water temperature of condenser when the unit operates for a long time and to increase inlet water temperature of evaporator on very hot or very cold conditions.


Sign in / Sign up

Export Citation Format

Share Document