Smart Heating System for Old Buildings - An Approach to the Decentralized Use of Renewable Energies

2016 ◽  
Vol 19 ◽  
pp. 20-26 ◽  
Author(s):  
Moritz Hein ◽  
Ralf Stöber ◽  
Gerhard Fischerauer ◽  
Johannes Bürner ◽  
Jörg Franke ◽  
...  

The central heating units of buildings are typically replaced every 20 to 30 years. There exists a variety of solutions for fuel-and gas-based units, but it would be advantageous to be able to use renewable energies. This would become possible by the combination of planar carbon-fiber-based infrared (IR) radiant heating foils with a heat pump providing hot water. The main goal of our proposed overall control strategy is to increase the energy efficiency while maintaining the thermal comfort for the residents. We examined the electromagnetic compatibility of the heating foils and simulated the relative contributions of the amount of energy provided by the heat pump and by the heating foils to obtain a maximum coefficient of performance for the combined heating system.

2017 ◽  
Vol 8 (3) ◽  
pp. 404-411 ◽  
Author(s):  
Yuguo Wu ◽  
Yake Jiang ◽  
Bo Gao ◽  
Zhigang Liu ◽  
Jing Liu

Abstract Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance) can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.


2013 ◽  
Vol 313-314 ◽  
pp. 759-762
Author(s):  
Yun Feng Ma ◽  
Yan Xiang Liu ◽  
Tao Ji

In order to fully recycle power plant’s circulatingwater heat, improve the thermal efficiency and protect the environment, thispaper designs the comprehensive scheme of heat pumptechnology recycling power plant’s circulating water heat, including theboiler mae-up water pre-heating system, the central heating circulatingsystem and the domestic hot water circulating system, which not only run at thesame time but also function independently. Even in non-heating seasons,the waste heat of circulating water can be utilized fully. It is worthmentioning that this paper puts forward to install climate compensationdevice in the central heating system, which can perform intelligent district timesharing control to meet different users’ needs.


2020 ◽  
Vol 12 (24) ◽  
pp. 10521
Author(s):  
Mariusz Szreder ◽  
Marek Miara

A standard Polish household with a central heating system powered by a solid fuel furnace was chosen as a case study. The modular Air Source Heat Pump (ASHP) was used to heat the hot water outside the heating season. In this article comparative studies of the impact of the compressor drive system used on the energy efficiency of the heat pump have been carried out in operating conditions. The ASHP heating capacity and coefficient of performance (COP) were determined for the outside air temperature in the range from 7 to 22 °C by heating the water in the tank to a temperature above 50 °C. For the case of a fixed speed compressor, average heating capacity in the range 2.7−3.1 kW and COP values in the range 3.2−4.6 depending on the evaporator supply air temperature were obtained. Similarly, for the inverter compressor, the average heating capacity in the range of 2.7−5.1 kW was obtained for the frequency in the range of 30–90 Hz and COP in the range 4.2−5.7, respectively. On cool days, the average heating capacity of the heat pump decreases by 12%. For the simultaneous operation of two compressors with comparable heating capacity, lower COP values were obtained by 20%.


2016 ◽  
Vol 26 (9) ◽  
pp. 1292-1304 ◽  
Author(s):  
Min Zhao ◽  
Weibin Kang ◽  
Xilian Luo ◽  
Chuck Wah Yu ◽  
X. Z. Meng ◽  
...  

The radiant heating system assisted by an air source heat pump has been widely applied in China for its effective energy conservation, high comfort performance and flexible utilization. Because the coefficient of performance of the system is strictly controlled by the supply water temperature heated by the air source heat pump, an efficient radiant terminal with low-temperature supply water is of significance to the coefficient of performance. In this research, the energy-saving feature of the capillary mat radiant heating system was first proved theoretically based on the influence of the heat transfer temperature difference on the coefficient of performance of the air source heat pump. In order to compare the performances of the capillary mat radiant and floor radiant heating systems, an experiment platform of two different radiant terminals assisted by an air source heat pump was established in a residential building in Xi’an, China. Experimental results showed that, to satisfy the indoor heating requirements, the supply and return water temperatures ought to be 35.0℃ and 30.9℃, respectively, and for the capillary mat radiant heating system, 43.9℃ and 38.8℃, respectively, for the floor radiant heating system. However, the electricity consumption of the capillary mat radiant heating system is 45% less than that of the floor radiant heating system. Thus, our study validated the energy-saving potential of the capillary mat radiant heating system assisted by an air source heat pump.


2014 ◽  
Vol 1008-1009 ◽  
pp. 54-57
Author(s):  
Xue Jun Li ◽  
Xiao Yan Luo ◽  
Chuan Qi Xu ◽  
Jin Shun Wu ◽  
Song Pan ◽  
...  

Through the comparative study of solar capillary low-temperature hot water radiant heating system with air source heat pump system has found that solar energy heat collecting efficiency has a great relationship with the collector temperature for the given system. To reduce the temperature of solar heat collector circulating water can greatly improve the heat collecting efficiency of the heat collector .With the increase of temperature of the water in the heat collector, heat collecting efficiency decrease rate changes linearly. Increasing water storage can improve the heat collecting efficiency, for this heat collecting system, the optimum collector temperature is 32 °C. In this study, COP reached 5 when the low temperature solar hot water capillary system mode is being used, and this result is nearly 5 times higher than that of the air source heat pump mode . Using the low temperature solar water heating capillary system, 27.35 kwh / (m2 ·heating season) of electricity can be saved compared with the amount of electricity consumed by air source heat pump. According to the price of current Beijing city , the estimated period of investment payback is 4.8 years .


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1576
Author(s):  
Piotr Jadwiszczak ◽  
Jakub Jurasz ◽  
Bartosz Kaźmierczak ◽  
Elżbieta Niemierka ◽  
Wandong Zheng

Heating and cooling sectors contribute to approximately 50% of energy consumption in the European Union. Considering the fact that heating is mostly based on fossil fuels, it is then evident that its decarbonization is one of the crucial tasks for achieving climate change prevention goals. At the same time, electricity sectors across the globe are undergoing a rapid transformation in order to accommodate the growing capacities of non-dispatchable solar and wind generators. One of the proposed solutions to achieve heating sector decarbonization and non-dispatchable generators power system integration is sector coupling, where heat pumps are perceived as a perfect fit. Air source heat pumps enable a rapid improvement in local air quality by replacing conventional heating sources, but at the same time, they put additional stress on the power system. The emissions associated with heat pump operation are a combination of power system energy mix, weather conditions and heat pump technology. Taking the above into consideration, this paper presents an approach to estimate which of the mentioned factors has the highest impact on heat pump emissions. Due to low air quality during the heating season, undergoing a power system transformation (with a relatively low share of renewables) in a case study located in Poland is considered. The results of the conducted analysis revealed that for a scenario where an air-to-water (A/W) heat pump is supposed to cover space and domestic hot water load, its CO2 emissions are shaped by country-specific energy mix (55.2%), heat pump technology (coefficient of performance) (33.9%) and, to a lesser extent, by changing climate (10.9%). The outcome of this paper can be used by policy makers in designing decarbonization strategies and funding distribution.


Author(s):  
Xiao Wang ◽  
Lin Fu ◽  
Xiling Zhao ◽  
Hua Liu

In recent years, with the continuous urban expansion, the central heating sources are commonly insufficient in the areas of Northern China. Besides, the increasing heat transfer temperature difference results in more and more exergy loss between the primary heat network and the secondary heat network. This paper introduces a new central heating system which combines the urban heat network with geothermal energy (CHSCHNGE). In this system, the absorption heat exchange unit, which is composed of an absorption heat pump and a water to water heat exchanger, is as alternative to the conventional water to water heat exchanger at the heat exchange station, and the doing work ability of the primary heat network is utilized to drive the absorption heat pump to extract the shallow geothermal energy. In this way, the heat supply ability of the system will be increased with fewer additional energy consumptions. Since the water after driving the absorption heat pump has high temperature, it can continue to heat the supply water coming from the absorption heat pump. As a result, the water of the primary heat network will be stepped cooled and the exergy loss will be reduced. In this study, the performance of the system is simulated based on the mathematical models of the heat source, the absorption heat exchange unit, the ground heat exchanger and the room. The thermodynamic analyses are performed for three systems and the energy efficiency and exergy efficiency are compared. The results show that (a) the COP of the absorption heat exchange unit is 1.25 and the heating capacity of the system increases by 25%, which can effectively reduce the requirements of central heating sources; (b) the PER of the system increases 14.4% more than that of the conventional co-generation central heating system and 54.1% more than that of the ground source heat pump system; (c) the exergy efficiency of the CHSCHNGE is 17.6% higher than that of the conventional co-generation central heating system and 45.6% higher than that of the ground source heat pump system.


1994 ◽  
Vol 116 (2) ◽  
pp. 88-93 ◽  
Author(s):  
E. Hahne ◽  
M. Hornberger

At Stuttgart University, a solar heating system for an office building with laboratories and lecture rooms was installed in 1985. It consists of 211 m2 of unglazed solar collectors, a 1050 m3 water-flooded pebble bed heat store, and a heat pump. Heat can be supplied to the store from the solar collectors or from a power station (as waste heat). The whole system has worked successfully for five years under varied strategies. In the first two heating periods, the heating strategy was aimed to collect as much solar energy as possible. Thus, about 60 percent of the heat demand could be covered by solar energy; but the yearly heat pump coefficient of performance (COP) was only around 2.76. With an improved heat pump, a monthly COP of 3.6 was obtained. Heat losses from the storage amounted to about 20 percent.


2021 ◽  
Vol 25 (1) ◽  
pp. 130-139
Author(s):  
Е.G. Komarov ◽  
◽  
V.V. Lozovetsky ◽  
V.V. Lebedev ◽  
V.M. Cherkina ◽  
...  

Results of design modeling of air-conditioning and central air of premises of server stations are presented. The estimation of thermal balance of typical server station is made. The potential of thermal energy which can be used is estimated it is useful for needs of central heating, to save power resources, and not to pollute environment thermal emissions. The detailed analysis of components of is material-power balance is made. The mathematical model of central air is developed for these purposes. Analysis problems of the heat substances exchange processes, the drainage of air connected with processes, occurring at its cooling are considered. The designing and operation problems interfaced with the heat substances exchange in air coolers are considered. The heat pump scheme of system is offered the central heating, utilizing warmly server station at air conditioning indoors. The model is offered and results of optimization of parameters heat pump schemes are considered. Results can be applied at designing of central airs of premises of server stations with passing recycling of thermal emissions for needs of central heating.


2021 ◽  
Author(s):  
Jamie Fine

Society’s use of fossil fuels has led to increasingly high levels of CO2 in the atmosphere. These levels have been linked to global average temperature rises, and increases in the severity and frequency of major weather events. To combat these effects, nations around the world have committed to reducing their CO2 emissions, and transition to renewable energy. This thesis focuses on the development of a novel solar heating system, which combines a hybrid solar panel and cascade heat pump. The thesis begins by presenting a high-level literature review of solar and heat pump technologies, followed by the initial design development of the system. Two design iterations are presented, illustrating that the final design was selected because it exhibits improved peak heat output, and reduced sensitivity to panel temperature. Next, a manuscript-based chapter is presented that focuses on utilizing the proposed solar heating system for water distillation. Case studies are presented that compare the performance of the proposed system with a solar still at four different locations. The final conclusion from these studies is that using the proposed system offers area-based performance improvements of 780% compared to a basic solar still. A second manuscript-based study is then presented, which focuses on utilizing the proposed solar heating system for domestic hot water production. Additional case studies are detailed that compare the proposed system to an evacuated tube design, and a single heat pump. The conclusions from these studies are that the proposed system exceeds the performance of the evacuated tube system by up to 64%, and that the proposed system is most beneficial during seasons with higher average dry-bulb temperatures, and increased solar irradiation. A final manuscript-based study is then presented, which focuses on a methodology for improving alternate mode thermal performance estimates for hybrid solar panels. The conclusion from this study is that the proposed methodology can successfully estimate thermal performance within 5% of actual values. Each of these studies contributes to the project goal of developing a novel solar energy heating system, which can be further developed to reduce global CO2 emissions, and reduce the effects of climate change.


Sign in / Sign up

Export Citation Format

Share Document