scholarly journals Research on the Influence of External Parameters of Fan-Type Nozzle on Water Jet Performance

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Baofu Kou ◽  
Pengliang Huo ◽  
Xiaohua Hou

At present, high-pressure water jet technology occupies a very important position in the automobile washing industry. Some automatic washers cannot meet the washing requirements in the washing process due to unreasonable arrangement of nozzles on their spray rods. Based on the theory of computational fluid dynamics (CFD), the internal and external flow field model of the nozzle are established in this paper. Fluent is used to simulate and analyze the flow field, and the external parameters of the nozzle on the side spray bar of the automatic automobile washer are optimized. The simulation results show that after the nozzle and the normal line of the automobile surface are inclined at a certain angle, the target surface is affected not only by normal striking force but also by tangential pushing force, which makes stains easier to remove. The washing effect is the best when the nozzle is inclined 30° to the normal line of the automobile surface. Increasing the nozzle inlet pressure will increase the dynamic pressure on the automobile surface, but the increase of dynamic pressure will decrease after increasing to a certain pressure. The inlet pressure has little effect on the area covered by water jet. The reasonable matching results of jet angle, nozzle spacing, and nozzle distance from the automobile surface (target distance) obtained by numerical simulation can not only make the automobile surface completely covered and cleaned but also ensure less jet interference and no waste of water from adjacent nozzles. The above research conclusions can provide a basic theoretical basis for the optimal design of automatic automobile washing.

2016 ◽  
Vol 34 (3) ◽  
pp. 507-512 ◽  
Author(s):  
Binwei Xia ◽  
Binqin Zhao ◽  
Yiyu Lu ◽  
Chengwei Liu ◽  
Chenpeng Song

2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Zeng-qiang Yang ◽  
Chang Liu ◽  
Feng-shuo Li ◽  
Lin-ming Dou ◽  
Gang-wei Li ◽  
...  

1988 ◽  
Vol 4 (4) ◽  
pp. 340-343 ◽  
Author(s):  
John H. Posselius ◽  
Jr.. Glenn T. Conklin

2011 ◽  
Vol 462-463 ◽  
pp. 774-779
Author(s):  
Hu Si ◽  
Xiao Hong Li ◽  
Yan Ming Xie

The high pressure waterjet is widely applied for mine industry, mechanical manufacture, environmental engineering, and medicine field due to its particular characteristic. Recently, the application of high pressure waterjet for gas drainage in mine has been receiving increasing attention with the development of exploitative technology. The micro-damage mechanism of coal under high pressure water jet is key to drain gas effectively. Based on damage mechanics and rock dynamics, the paper analyzed the micro-structure deformation and damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on the Arbitrary Lagrangian Eulerian (ALE) fluid-solid coupling penalty function method. The rock damage under high pressure water jet was simulated by the dynamic contact method. The results showed that the damage and breakage of ruck was mainly attributed to impacting effect and was characterized by local effect, and the evolvement of rock breakage went through three stages and the figure of rock breakage trended a funnel. On the whole, numerical results agreed with experimental results.


2015 ◽  
Vol 126 ◽  
pp. 295-299 ◽  
Author(s):  
Hailong Chen ◽  
Zhaomin Li ◽  
Zhihan Gao ◽  
Yuanyuan Sun

Sign in / Sign up

Export Citation Format

Share Document