scholarly journals Hydrochemical Characteristics and Evolution Mode of Cold Seeps in the Qiongdongnan Basin, South China Sea

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhifeng Wan ◽  
Chongmin Chen ◽  
Jinqiang Liang ◽  
Wei Zhang ◽  
Wei Huang ◽  
...  

Submarine cold seeps have recently attracted significant attention and are among the most effective indicators of gas hydrate in the oceans. In this study, remotely operated vehicle (ROV) observations, seismic profiles, core sediments, bottom seawater, and fluid vented from cold seeps in the deep-water Qiongdongnan Basin were used to investigate the origin and evolution of cold seeps and their relationships with gas hydrate. At stations A, B, and C, inactive cold seeps with dead clams, cold seep leakage with live clams, and active cold seeps with a rich mussel presence, respectively, were observed. The salinity and Na+ and Cl- concentrations of the cold seeps were different from those of typical seawater owing to gas hydrate formation and decomposition and fluid originating from various depths. The main ion concentrations of the bottom seawater at stations B and C were higher than those at station A, indicating the substantial effects of low-salinity cold seep fluids from gas hydrate decomposition. The Na+-Cl-, K+-Cl-, Mg2+-Cl-, and Ca2+-Cl- diagrams and rare earth element distribution curves of the water samples were strongly affected by seawater. The concentrations of trace elements and their ratios to Cl- in the bottom seawater were high at the stations with cold seeps, suggesting the mixing of other fluids rich in those elements. Biochemical reactions may also have caused the chemical anomalies. Samples of HM-ROV-1 indicated a greater effect of upward cold seep fluids with higher B/Cl-, Sr/Cl-, and Ba/Cl- values. Moreover, the Re/Cl- value varied between fluid vents, possibly due to differences in Re precipitation strength. Differences in cold seep intensity are also believed to occur between areas. The cold seep fluxes changed from large to small before finally disappearing, showing a close connection with gas hydrate formation and decomposition, and influenced the local topography and ecosystems.

2020 ◽  
Vol 8 ◽  
Author(s):  
F. Badesab ◽  
P. Dewangan ◽  
V. Gaikwad

Diagenetically formed magnetic minerals at marine methane seep sites are potential archive of past fluid flow and could provide important constraints on the evolution of past methane seepage dynamics and gas hydrate formation over geologic time. In this study, we carried out integrated rock magnetic, and mineralogical analyses, supported by electron microscope observations, on a seep impacted sediment core to unravel the linkage between greigite magnetism, methane seepage dynamics, and evolution of shallow gas hydrate system in the K-G basin. Three sediment magnetic zones (MZ-1, MZ-2, and MZ-3) have been identified based on the down-core variations in rock magnetic properties. Two events of intense methane seepage are identified. Repeated occurences of authigenic carbonates throughout the core indicate the episodic intensification of anaerobic oxidation of methane (AOM) at the studied site. Marked depletion in magnetic susceptibility manifested by the presence of chemosynthetic shells (Calyptogena Sp.), methane-derived authigenic carbonates, and abundant pyrite grains provide evidences on intense methane seepage events at this site. Fracture-controlled fluid transport supported the formation of gas hydrates (distributed and massive) at this site. Three greigite bearing sediment intervals (G1, G2, G3) within the magnetically depleted zone (MZ-2) are probably the paleo-gas hydrate (distributed-type vein filling) intervals. A strong linkage among clay content, formation of veined hydrate deposits, precipitation of authigenic carbonates and greigite preservation is evident. Hydrate crystallizes within faults/fractures formed as the methane gas migrates through the gas hydrate stability zone (GHSZ). Formation of authigenic carbonate layers coupled with clay deposits restricted the upward migrating methane, which led to the formation of distributed-type vein filling hydrate deposits. A closed system created by veined hydrates trapped the sulfide and limited its availability thereby, causing arrestation of pyritization and favored the formation and preservation of greigite in G1, G2, G3.


2014 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Peyman Sabzi ◽  
Saheb Noroozi

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3615
Author(s):  
Florian Filarsky ◽  
Julian Wieser ◽  
Heyko Juergen Schultz

Gas hydrates show great potential with regard to various technical applications, such as gas conditioning, separation and storage. Hence, there has been an increased interest in applied gas hydrate research worldwide in recent years. This paper describes the development of an energetically promising, highly attractive rapid gas hydrate production process that enables the instantaneous conditioning and storage of gases in the form of solid hydrates, as an alternative to costly established processes, such as, for example, cryogenic demethanization. In the first step of the investigations, three different reactor concepts for rapid hydrate formation were evaluated. It could be shown that coupled spraying with stirring provided the fastest hydrate formation and highest gas uptakes in the hydrate phase. In the second step, extensive experimental series were executed, using various different gas compositions on the example of synthetic natural gas mixtures containing methane, ethane and propane. Methane is eliminated from the gas phase and stored in gas hydrates. The experiments were conducted under moderate conditions (8 bar(g), 9–14 °C), using tetrahydrofuran as a thermodynamic promoter in a stoichiometric concentration of 5.56 mole%. High storage capacities, formation rates and separation efficiencies were achieved at moderate operation conditions supported by rough economic considerations, successfully showing the feasibility of this innovative concept. An adapted McCabe-Thiele diagram was created to approximately determine the necessary theoretical separation stage numbers for high purity gas separation requirements.


Sign in / Sign up

Export Citation Format

Share Document