scholarly journals Effect of Clogging on the Permeability of Porous Asphalt Pavement

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Yaolu Ma ◽  
Xianhua Chen ◽  
Yanfen Geng ◽  
Xinlan Zhang

The purpose of this paper is to report on the drainage of porous asphalt pavement evaluation method suited for use in analyzing clogging effect. To preliminarily reveal the decrease in permeability caused by clogging of permeable asphalt pavement, an innovative device was proposed to evaluate the anisotropy of permeability influenced by clogging, and the maximum drainage capacity without surface ponding can be obtained when the supplied water was controlled. Then, finite element models for asphalt pavements with hydromechanical coupling were proposed based on porous media theory and Biot’s theory. The variation in pore water pressure was simulated by considering the decrease in voids and the increase in clogging grains. The results indicate that the internally retained water should not be ignored because the semiconnected voids were filled with water rapidly at the beginning of permeability tests. To avoid surface ponding, the drainage capacity coefficient (DCC) can be used to evaluate the maximum drainage capacity (MDC) influenced by clogging. Moreover, the pore water pressure increased due to the reduction in voids and a high level of clogging. In addition, the peak value of pore water pressure is also affected by the upper-layer height of the pavement. Under the action of clogging and driving load, a reasonable thickness of the upper layer and a drainage evaluation should be considered to improve road safety.

Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 138 ◽  
Author(s):  
Yasutaka Tanaka ◽  
Taro Uchida ◽  
Hitoshi Nagai ◽  
Hikaru Todate

Soil pipes are commonly found in landslide scarps, and it has been suggested that build-up of pore water pressure due to clogged soil pipes influences landslide initiation. Several researchers have also suggested that entrapped air in the soil layer increases the pore water pressure. We carried out bench-scale model experiments to investigate the influence of soil pipes and entrapped air on the build-up of pore water pressure. We installed a water supply system consisting of an artificial rainfall simulator, and used a water supply tank to supply water to the model slope and artificial pipe. We used two types of artificial pipe: A straight pipe, and a confluence of three pipes. Furthermore, we placed a layer of silica sand on top of the model slope to investigate the effect of entrapped air in the soil layer on the build-up of pore water pressure. Silica sand is finer than the sand that we used for the bulk of the model slope. Our results indicate that, although artificial pipes decrease the pore water pressure when the amount of water supplied was smaller than the pipe drainage capacity, the pore water pressure increased when the water supply was too large for the artificial pipe to drain. In particular, the confluence of pipes increased the pore water pressure because the water supply exceeded the drainage capacity. The results also indicate that entrapped air increases the pore water pressure in the area with relatively low drainage capacity, too. Based on these results, we found that although soil pipes can drain a certain amount of water from a soil layer, they can also increase the pore water pressure, and destabilize slopes. Furthermore, entrapped air enhances the trend that the pore water pressure can increase in the area with relatively low drainage capacity, as pore water pressure increases when too much water is supplied, and the artificial pipe cannot drain all of it.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 959 ◽  
Author(s):  
Yazhen Sun ◽  
Rui Guo ◽  
Lin Gao ◽  
Jinchang Wang ◽  
Xiaochen Wang ◽  
...  

To study the dynamic response of saturated asphalt pavement under moving load and temperature load, 3-D finite element models for asphalt pavements with hydro-mechanical coupling and thermal-hydro-mechanical coupling were built based on the porous media theory and Biot theory. First, the asphalt pavement structure was considered as an ideal saturated fluid–solid biphasic porous medium. Following this, the spatial distribution and the change law of the pore-water pressure with time, the transverse stress, and the vertical displacement response of the asphalt pavement under different speeds, loading times, and temperatures were investigated. The simulation results show that both the curves of the effective stress and the pore-water pressure versus the external loads have similar patterns. The damage of the asphalt membrane is mainly caused by the cyclic effect of positive and negative pore-water pressure. Moreover, the peak value of pore-water pressure is affected by the loading rate and the loading time, and both have positive exponential effects on the pore-water pressure. In addition, the transverse stress of the upper layer pavement is deeply affected by the temperature load, which is more likely to cause as transverse crack in the pavement, resulting in the formation of temperature cracks on the road surface. The vertical stress at the middle point in the upper layer of the saturated asphalt pavement, under the action of the temperature load and the driving load, shows a single peak.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


Sign in / Sign up

Export Citation Format

Share Document