scholarly journals Influence of the Mesoscopic Viscoelastic Contact Model on Characterizing the Rheological Behavior of Asphalt Concrete in the DEM Simulation

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jiaolong Ren ◽  
Zhe Liu ◽  
Jinshun Xue ◽  
Yinshan Xu

The numerical simulation based on the discrete element method (DEM) is popular to analyze the material behavior of asphalt concrete in recent years because of the advantage of the DEM in characterizing the heterogeneous microstructures. As a type of viscoelastic material, the rheological behavior of asphalt concrete is represented depending on the mesoscopic viscoelastic contact model between two particles in a contact in DEM simulations. However, what is missing in the existing literature studies is analysis of the influence of the mesoscopic viscoelastic contact models. Hence, the existing mesoscopic viscoelastic contact models are employed to build different types of DEM numerical samples of asphalt concrete in this study. Laboratory tests and the corresponding numerical tests at different temperatures and frequencies are implemented to investigate the difference in simulation precision in the case of using different mesoscopic viscoelastic contact models via the rheological index of dynamic modulus and phase angle. The results show the following: (1) the mesoscopic generalized Maxwell contact model provides the best simulation precision at low temperatures; (2) the mesoscopic generalized Kelvin contact model shows an improved precision at high temperatures; and (3) although the mesoscopic Burgers contact model has the simplest mathematical structure, the simulation precisions are obviously lower than those of the other two contact models, particularly when simulating the phase angle at low temperatures and frequencies. The results will be beneficial to select the appropriate mesoscopic contact model for the DEM modeling of asphalt concrete according to the loading conditions.

2012 ◽  
Vol 134 (1) ◽  
Author(s):  
A. Megalingam ◽  
M. M. Mayuram

The study of the contact stresses generated when two surfaces are in contact plays a significant role in understanding the tribology of contact pairs. Most of the present contact models are based on the statistical treatment of the single asperity contact model. For a clear understanding about the elastic-plastic behavior of two rough surfaces in contact, comparative study involving the deterministic contact model, simplified multi-asperity contact model, and modified statistical model are undertaken. In deterministic contact model analysis, a three dimensional deformable rough surface pressed against a rigid flat surface is carried out using the finite element method in steps. A simplified multi-asperity contact model is developed using actual summit radii deduced from the rough surface, applying single asperity contact model results. The resultant contact parameters like contact load, contact area, and contact pressure are compared. The asperity interaction noticed in the deterministic contact model analysis leads to wide disparity in the results. Observing the elastic-plastic transition of the summits and the sharing of contact load and contact area among the summits, modifications are employed in single asperity statistical contact model approaches in the form of a correction factor arising from asperity interaction to reduce the variations. Consequently, the modified statistical contact model and simplified multi-asperity contact model based on actual summit radius results show improved agreement with the deterministic contact model results.


2014 ◽  
Vol 81 (9) ◽  
Author(s):  
Man-Gong Zhang ◽  
Jinju Chen ◽  
Xi-Qiao Feng ◽  
Yanping Cao

Indentation has been widely used to characterize the mechanical properties of biopolymers. Besides Hertzian solution, Sneddon's solution is frequently adopted to interpret the indentation data to deduce the elastic properties of biopolymers, e.g., elastic modulus. Sneddon's solution also forms the basis to develop viscoelastic contact models for determining the viscoelastic properties of materials from either conical or flat punch indentation responses. It is worth mentioning that the Sneddon's solution was originally proposed on the basis of linear elastic contact theory. However, in both conical and flat punch indentation of compliant materials, the indented solid may undergo finite deformation. In this case, the extent to which the Sneddon's solution is applicable so far has not been systematically investigated. In this paper, we use the combined theoretical, computational, and experimental efforts to investigate the indentation of hyperelastic compliant materials with a flat punch or a conical tip. The applicability of Sneddon's solutions is examined. Furthermore, we present new models to determine the elastic properties of nonlinear elastic biopolymers.


Author(s):  
Md Mehedi Hasan ◽  
Hasan M. Faisal ◽  
Biswajit K. Bairgi ◽  
A. S. M. Rahman ◽  
Rafiqul Tarefder

Asphalt concrete’s dynamic modulus (|E*|) is one of the key input parameters for structural design of flexible pavement according to the Mechanistic Empirical Pavement Design Guide (MEPDG). Till this day, pavement industry uses |E*| to predict pavement performance whether the material is hot mix asphalt (HMA) or warm mx asphalt or Reclaimed Asphalt Pavement (RAP) mixed HMA. However, it is necessary to investigate the correlation of |E*| with laboratory performance testing. In this study, laboratory dynamic modulus test was conducted on four different asphalt concrete mixtures collected from different construction sites in the state of New Mexico and mastercurves were obtained to evaluate dynamic modulus (|E*|) for a wide range of frequency. In addition, fatigue performance of these mixtures was predicted from the mastercurves and compared with the laboratory fatigue performance testing. Fatigue performance of these mixtures was evaluated from the four point beam fatigue test. The laboratory results show a good agreement with the predicted value from mastercurves. It is also observed from this study that the fatigue life of the asphalt concrete materials decreases with increase in |E*| value.


2020 ◽  
Author(s):  
Nadezhda Sergeevna Shirieva ◽  
Artur Kamilevich Shiriev ◽  
Rezeda Rafisovna Tlyasheva ◽  
Evgeny Anatolyevich Naumkin

Sign in / Sign up

Export Citation Format

Share Document