scholarly journals Image Interpolation via Gradient Correlation-Based Edge Direction Estimation

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Sajid Khan ◽  
Dong-Ho Lee ◽  
Muhammad Asif Khan ◽  
Muhammad Faisal Siddiqui ◽  
Raja Fawad Zafar ◽  
...  

This paper introduces an image interpolation method that provides performance superior to that of the state-of-the-art algorithms. The simple linear method, if used for interpolation, provides interpolation at the cost of blurring, jagging, and other artifacts; however, applying complex methods provides better interpolation results, but sometimes they fail to preserve some specific edge patterns or results in oversmoothing of the edges due to postprocessing of the initial interpolation process. The proposed method uses a new gradient-based approach that makes an intelligent decision based on the edge direction using the edge map and gradient map of an image and interpolates unknown pixels in the predicted direction using known intensity pixels. The input image is subjected to the efficient hysteresis thresholding-based edge map calculation, followed by interpolation of low-resolution edge map to obtain a high-resolution edge map. Edge map interpolation is followed by classification of unknown pixels into obvious edges, uniform regions, and transitional edges using the decision support system. Coefficient-based interpolation that involves gradient coefficient and distance coefficient is applied to obvious edge pixels in the high-resolution image, whereas transitional edges in the neighborhood of an obvious edge are interpolated in the same direction to provide uniform interpolation. Simple line averaging is applied to pixels that are not detected as an edge to decrease the complexity of the proposed method. Applying line averaging to smooth pixels helps to control the complexity of the algorithm, whereas applying gradient-based interpolation preserves edges and hence results in better performance at reasonable complexity.

Author(s):  
Cheng-ming Liu ◽  
Hai-bo Pang ◽  
Liang-pin Ren ◽  
Zhe Zhao ◽  
Shu-yan Zhang

In this paper, we propose a new image interpolation algorithm by using geometric subdivision. Similar to image upsampling, the geometric subdivision can supplement unknown data according to a certain rule, but it can only generate smooth data. To preserve the sharp edges of the high-resolution image, we adopt a rational subdivision scheme. By adjusting the weight coefficients of the rational subdivision, we can control the mesh shape near sharp edges. Hence, the image edges are preserved.


Author(s):  
Bagus Hardiansyah ◽  
Aidil Primasetya Armin ◽  
Anton Breva Yunanda

Digital image interpolation is important role in the geometric manipulation of a digital image. Interpolation is related to the process of mapping pixels, forward and reverse.Then this research will implementation of the bicubic interpolation method in the image process that is 16 pixel  nearest neighborhood contained in the input image and generated a new pixel value with upscale  and . Tests carried out on the type of RGB and images with BMP format with a variety of different image sizes. Tests with secondary data "Set5" and "Set14" validation results on upscale 3x using the PSNR method and results based on the average value of the secondary data "Set5" 30.40 and "Set14" 27.54 Keywords: Bicubic Interpolation, Super Resolution, PSNR,


2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.


2008 ◽  
Vol 33-37 ◽  
pp. 821-826
Author(s):  
Zheng Zhang ◽  
Geng Liu ◽  
Tian Xiang Liu

An adaptive meshless element-free Galerkin-finite element (EFG-FE) coupling model for thermal elasto-plastic contact problems is developed to investigate the influences of the steady-state frictional heating on the contact performance of two contacting bodies. The thermal elasto-plastic contact problems using the initial stiffness method is presented. The local adaptive refinement strategy and the strain energy gradient-based error estimation for EFG-FE coupling method are combined. The adaptive meshless model takes into account the temperature variation, micro plastic flow, and the coupled thermo-elasto-plastic behavior of the materials, considering the strain-hardening property of the materials and temperature-dependent yield strength. The adaptive model is verified through the contact analysis of a cylinder with an elasto-plastic plane. The thermal effects on the contact pressure, stresses distributions with certain frictional heat inputs are studied. The results show that the accuracy of the solutions from the adaptive refinement model is satisfactory but the cost of the CPU time is much less than that for the uniform refinement calculation.


2021 ◽  
Author(s):  
Mohamed Elkhawaga ◽  
Wael A. Elghaney ◽  
Rajarajan Naidu ◽  
Assef Hussen ◽  
Ramy Rafaat ◽  
...  

Abstract Optimizing the number of casing strings has a direct impact on cost of drilling a well. The objective of the case study presented in this paper is the demonstration of reducing cost through integration of data. This paper shows the impact of high-resolution 3D geomechanical modeling on well cost optimization for the GS327 Oil field. The field is located in the Sothern Gulf of Suez basin and has been developed by 20 wells The conventional casing design in the field included three sections. In this mature field, especially with the challenge of reducing production cost, it is imperative to look for opportunites to optimize cost in drilling new wells to sustain ptoduction. 3D geomechanics is crucial for such cases in order to optimize the cost per barrel at the same time help to drill new wells safely. An old wellbore stability study did not support the decision-maker to merge any hole sections. However, there was not geomechanics-related problems recorded during the drilling the drilling of different mud weights. In this study, a 3D geomechanical model was developed and the new mud weight calculations positively affected the casing design for two new wells. The cost optimization will be useful for any future wells to be drilled in this area. This study documents how a 3D geomechanical model helped in the successful delivery of objectives (guided by an understanding of pore pressure and rock properties) through revision of mud weight window calculations that helped in optimizing the casing design and eliminate the need for an intermediate casing. This study reveals that the new calculated pore pressure in the GS327 field is predominantly hydrostatic with a minor decline in the reservoir pressure. In addition, rock strength of the shale is moderately high and nearly homogeneous, which helped in achieving a new casing design for the last two drilled wells in the field.


2017 ◽  
Vol 21 (4) ◽  
pp. 2187-2201 ◽  
Author(s):  
Pere Quintana-Seguí ◽  
Marco Turco ◽  
Sixto Herrera ◽  
Gonzalo Miguez-Macho

Abstract. Offline land surface model (LSM) simulations are useful for studying the continental hydrological cycle. Because of the nonlinearities in the models, the results are very sensitive to the quality of the meteorological forcing; thus, high-quality gridded datasets of screen-level meteorological variables are needed. Precipitation datasets are particularly difficult to produce due to the inherent spatial and temporal heterogeneity of that variable. They do, however, have a large impact on the simulations, and it is thus necessary to carefully evaluate their quality in great detail. This paper reports the quality of two high-resolution precipitation datasets for Spain at the daily time scale: the new SAFRAN-based dataset and Spain02. SAFRAN is a meteorological analysis system that was designed to force LSMs and has recently been extended to the entirety of Spain for a long period of time (1979/1980–2013/2014). Spain02 is a daily precipitation dataset for Spain and was created mainly to validate regional climate models. In addition, ERA-Interim is included in the comparison to show the differences between local high-resolution and global low-resolution products. The study compares the different precipitation analyses with rain gauge data and assesses their temporal and spatial similarities to the observations. The validation of SAFRAN with independent data shows that this is a robust product. SAFRAN and Spain02 have very similar scores, although the latter slightly surpasses the former. The scores are robust with altitude and throughout the year, save perhaps in summer when a diminished skill is observed. As expected, SAFRAN and Spain02 perform better than ERA-Interim, which has difficulty capturing the effects of the relief on precipitation due to its low resolution. However, ERA-Interim reproduces spells remarkably well in contrast to the low skill shown by the high-resolution products. The high-resolution gridded products overestimate the number of precipitation days, which is a problem that affects SAFRAN more than Spain02 and is likely caused by the interpolation method. Both SAFRAN and Spain02 underestimate high precipitation events, but SAFRAN does so more than Spain02. The overestimation of low precipitation events and the underestimation of intense episodes will probably have hydrological consequences once the data are used to force a land surface or hydrological model.


2013 ◽  
Vol 21 (1) ◽  
pp. 1137 ◽  
Author(s):  
Shengkui Gao ◽  
Viktor Gruev

Sign in / Sign up

Export Citation Format

Share Document