scholarly journals Three-Dimensional Stability Characteristics of Finite Electrified Conducting Fluids Streaming through a Porous Medium

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
T. M. N. Metwaly ◽  
Zakaria M. Gharsseldien

A novel procedure is utilized to investigate the surface waves between two finite conducting fluids streaming through a porous medium in the presence of a horizontal electric field. Normal mode analysis is applied to study two- and three-dimension disturbances cases. The quadratic dispersion equation of complex coefficients representing the system is derived and discussed. It is noted that based on appropriate data selections, the stability criteria do not depend on the medium permeability. It is found that electrical conductivities, viscosities, medium porosity, and surface tension enhance the stability of the system while the dimension and the fluid velocities decrease the stability of the system. Finally, the fluid depths have a dual role (stabilizing as well as destabilizing effects) on the system.

2013 ◽  
Vol 18 (1) ◽  
pp. 99-112 ◽  
Author(s):  
P. Kumar ◽  
H. Mohan

Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 539-550 ◽  
Author(s):  
Kumar Aggarwal ◽  
Anushri Verma

The purpose of this paper is to study the effects of compressibility, rotation, magnetic field and suspended particles on thermal stability of a layer of visco-elastic Walters? (model) fluid in porous medium. Using linearized theory and normal mode analysis, dispersion relation has been obtained. In case of stationary convection, it is found that the rotation has stabilizing effect on the system. The magnetic field may have destabilizing effect on the system in the presence of rotation while in the absence of rotation it always has stabilizing effect. The medium permeability has destabilizing effect on the system in the absence of rotation while in the presence of rotation it may have stabilizing effect. The suspended particles and compressibility always have destabilizing effect. Due to vanishing of visco-elastic parameter, the compressible visco-elastic fluid behaves like Newtonian fluid. Graphs have also been plotted to depict the stability characteristics. The viscoelasticity, magnetic field and rotation are found to introduce oscillatory modes into the system which were non-existent in their absence.


2013 ◽  
Vol 35 (3) ◽  
pp. 45-56 ◽  
Author(s):  
S.K. Kango ◽  
G.C. Rana ◽  
Ramesh Chand

Abstract The Triple-Diffusive convection in Walters’ (Model B') fluid with varying gravity field is considered in the presence of uniform vertical magnetic field in porous medium. For the case of stationary convection, the magnetic field, varying gravity field and the stable solute gradients have stabilizing effects whereas the medium permeability has destabilizing (or stabilizing) effect on the system under certain conditions. A linear stability analysis theory and normal mode analysis method have been carried out to study the onset convection. The kinematic viscoelasticity has no effect on the stationary convection. The solute gradients, magnetic field, varying gravity field, porosity and kinematic viscoelasticity introduce oscillatory modes in the system, which were non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained. The results are also shown graphically.


2013 ◽  
Vol 18 (3) ◽  
pp. 871-886
Author(s):  
M. Singh ◽  
R.K. Gupta

Abstract The effect of Hall currents and suspended dusty particles on the hydromagnetic stability of a compressible, electrically conducting Rivlin-Ericksen elastico viscous fluid in a porous medium is considered. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For the case of stationary convection, Hall currents and suspended particles are found to have destabilizing effects whereas compressibility and magnetic field have stabilizing effects on the system. The medium permeability, however, has stabilizing and destabilizing effects on thermal instability in contrast to its destabilizing effect in the absence of the magnetic field. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers are depicted graphically. The magnetic field, Hall currents and viscoelasticity parameter are found to introduce oscillatory modes in the systems, which did not exist in the absence of these parameters


2021 ◽  
Author(s):  
D Srinivasacharya ◽  
Dipak Barman

Abstract The stability of nanofluid flow in a vertical channel packed with a porous medium is examined for the local thermal non-equilibrium state of the fluid, particle and solid-matrix phases. The effects of Brownian motion along with thermophoresis are incorporated in the nanofluid model. The Darcy-Brinkman model for the flow in a porous medium and three-field model, each representing the fluid, particle and solid-matrix phases separately, for temperature is used. A normal mode analysis is used to obtain the eigenvalue problem for the perturbed state, which is then solved using the Chebyshev spectral collocation technique. The critical Rayleigh number and corresponding wavenumber are presented graphically for the effect of different local thermal non-equilibrium parameters. It is noticed that the influence of LTNE parameters on the convective instability is significant.


2013 ◽  
Vol 35 (4) ◽  
pp. 75-88
Author(s):  
G.C. Rana ◽  
H.S. Jamwal

Abstract In this paper, the thermal instability of compressible Walters’ (Model B′) rotating fluid permeated with suspended particles (fine dust) in porous medium in hydromagnetics is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection, Walters’ (Model B′) elastico-viscous fluid behaves like an ordinary Newtonian fluid and it is observed that rotation has stabilizing effect, suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions


2014 ◽  
Vol 6 (1) ◽  
pp. 24-45
Author(s):  
G. C. Rana

AbstractThe thermosolutal instability of Rivlin-Ericksen elasticoviscous rotating fluid permeated with suspended particles (fine dust) and variable gravity field in porous medium in hydromagnetics is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, gravity field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection, the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions. The effect of rotation, suspended particles, magnetic field, stable solute gradient and medium permeability has also been shown graphically.


2013 ◽  
Vol 29 (4) ◽  
pp. 569-582 ◽  
Author(s):  
M. F. El-Sayed ◽  
N. T. Eldabe ◽  
M. H. Haroun ◽  
D. M. Mostafa

ABSTRACTA nonlinear stability of two superposed semi-infinite Walters B′ viscoelastic dielectric fluids streaming through porous media in the presence of vertical electric fields in absence of surface charges at their interface is investigated in three dimensions. The method of multiple scales is used to obtain a Ginzburg-Landau equation with complex coefficients describing the behavior of the system. The stability of the system is discussed both analytically and numerically in linear and nonlinear cases, and the corresponding stability conditions are obtained. It is found, in the linear case, that the surface tension and medium permeability have stabilizing effects, and the fluid velocities, electric fields and kinematic viscoelastici-ties have destabilizing effects, while the porosity of porous medium and kinematic viscosities have dual role on the stability. In the nonlinear case, it is found that the fluid velocities, kinematic viscosities, kinematic viscoelasticities, surface tension and porosity of porous medium have stabilizing effects; while the electric fields and medium permeability have destabilizing effects.


2012 ◽  
Vol 67 (12) ◽  
pp. 685-691 ◽  
Author(s):  
Ramesh Chand ◽  
Gian Chand Rana

Dufour and Soret effects on the convection in a horizontal layer of Rivlin-Ericksen elastico- viscous fluid in porous medium are considered. For the porous medium, the Darcy model is used. A linear stability analysis based upon normal mode analysis is employed to find a solution of the fluid layer confined between two free boundaries. The onset criterion for stationary and oscillatory convection has been derived analytically, and graphs have been plotted, giving various numerical values to various parameters, to depict the stability characteristics. The effects of the Dufour parameter, Soret parameter, solutal Rayleigh number, and Lewis number on stationary convection have been investigated.


2013 ◽  
Vol 18 (2) ◽  
pp. 555-569 ◽  
Author(s):  
R.C. Thakur ◽  
G.C. Rana

In this paper, we investigate the effect of a vertical magnetic field on thermal instability of an Oldroydian visco-elastic rotating fluid in a porous medium. By applying the normal mode analysis method, the dispersion relation governing the effects of rotation, magnetic field and medium permeability is derived and solved analytically and numerically. For the case of stationary convection, the Oldroydian viscoelastic fluid behaves like an ordinary Newtonian fluid and it is observed that rotation has a stabilizing effect while the magnetic field and medium permeability have a stabilizing/destabilizing effect under certain conditions on thermal instability of the Oldroydian viscoelastic fluid in a porous medium. The oscillatory modes are introduced due to the presence of rotation, the magnetic field and gravity field. It is also observed that the ‘principle of exchange of stability’ is invalid in the presence of rotation and the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document