Effect of Local Thermal Non-Equilibrium On the Stability of the Flow in a Vertical Channel Filled with Nanofluid Saturated Porous Medium

2021 ◽  
Author(s):  
D Srinivasacharya ◽  
Dipak Barman

Abstract The stability of nanofluid flow in a vertical channel packed with a porous medium is examined for the local thermal non-equilibrium state of the fluid, particle and solid-matrix phases. The effects of Brownian motion along with thermophoresis are incorporated in the nanofluid model. The Darcy-Brinkman model for the flow in a porous medium and three-field model, each representing the fluid, particle and solid-matrix phases separately, for temperature is used. A normal mode analysis is used to obtain the eigenvalue problem for the perturbed state, which is then solved using the Chebyshev spectral collocation technique. The critical Rayleigh number and corresponding wavenumber are presented graphically for the effect of different local thermal non-equilibrium parameters. It is noticed that the influence of LTNE parameters on the convective instability is significant.

2013 ◽  
Vol 18 (1) ◽  
pp. 99-112 ◽  
Author(s):  
P. Kumar ◽  
H. Mohan

Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 539-550 ◽  
Author(s):  
Kumar Aggarwal ◽  
Anushri Verma

The purpose of this paper is to study the effects of compressibility, rotation, magnetic field and suspended particles on thermal stability of a layer of visco-elastic Walters? (model) fluid in porous medium. Using linearized theory and normal mode analysis, dispersion relation has been obtained. In case of stationary convection, it is found that the rotation has stabilizing effect on the system. The magnetic field may have destabilizing effect on the system in the presence of rotation while in the absence of rotation it always has stabilizing effect. The medium permeability has destabilizing effect on the system in the absence of rotation while in the presence of rotation it may have stabilizing effect. The suspended particles and compressibility always have destabilizing effect. Due to vanishing of visco-elastic parameter, the compressible visco-elastic fluid behaves like Newtonian fluid. Graphs have also been plotted to depict the stability characteristics. The viscoelasticity, magnetic field and rotation are found to introduce oscillatory modes into the system which were non-existent in their absence.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
T. M. N. Metwaly ◽  
Zakaria M. Gharsseldien

A novel procedure is utilized to investigate the surface waves between two finite conducting fluids streaming through a porous medium in the presence of a horizontal electric field. Normal mode analysis is applied to study two- and three-dimension disturbances cases. The quadratic dispersion equation of complex coefficients representing the system is derived and discussed. It is noted that based on appropriate data selections, the stability criteria do not depend on the medium permeability. It is found that electrical conductivities, viscosities, medium porosity, and surface tension enhance the stability of the system while the dimension and the fluid velocities decrease the stability of the system. Finally, the fluid depths have a dual role (stabilizing as well as destabilizing effects) on the system.


2012 ◽  
Vol 67 (12) ◽  
pp. 685-691 ◽  
Author(s):  
Ramesh Chand ◽  
Gian Chand Rana

Dufour and Soret effects on the convection in a horizontal layer of Rivlin-Ericksen elastico- viscous fluid in porous medium are considered. For the porous medium, the Darcy model is used. A linear stability analysis based upon normal mode analysis is employed to find a solution of the fluid layer confined between two free boundaries. The onset criterion for stationary and oscillatory convection has been derived analytically, and graphs have been plotted, giving various numerical values to various parameters, to depict the stability characteristics. The effects of the Dufour parameter, Soret parameter, solutal Rayleigh number, and Lewis number on stationary convection have been investigated.


2017 ◽  
Vol 47 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Ramesh Chand ◽  
G. C. Rana ◽  
Dhananjay Yadav

Abstract Thermal instability in a horizontal layer of Couple-stress nanofluid in a porous medium is investigated. Darcy model is used for porous medium. The model used for nanofluid incorporates the effect of Brownian diffusion and thermophoresis. The flux of volume fraction of nanoparticle is taken to be zero on the isothermal boundaries. Normal mode analysis and perturbation method is employed to solve the eigenvalue problem with the Rayleigh number as eigenvalue. Oscillatory convection cannot occur for the problem. The effects of Couple-stress parameter, Lewis number, modified diffusivity ratio, concentration Rayleigh number and porosity on stationary convection are shown both analytically and graphically.


2012 ◽  
Vol 134 (12) ◽  
Author(s):  
Ramesh Chand ◽  
G. C. Rana

Thermal instability in a horizontal layer of Rivlin–Ericksen elastico-viscous nanofluid in a porous medium is considered. A linear stability analysis based upon normal mode analysis is used to find a solution of the fluid layer confined between two free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically and graphs have been plotted by giving numerical values to various parameters to depict the stability characteristics. The effects of the concentration Rayleigh number, Vadasz number, capacity ratio, Lewis number, and kinematics viscoelasticity parameter on the stability of the system are investigated. Regimes of oscillatory and nonoscillatory convection for various parameters are derived and discussed in detail. The sufficient conditions for the nonexistence of oscillatory convection have also been obtained.


Author(s):  
Mikhail A. Sheremet ◽  
Ioan Pop ◽  
A. Cihat Baytas

Purpose This study aims to numerically analyze natural convection of alumina-water nanofluid in a differentially-heated square cavity partially filled with a heat-generating porous medium. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been considered for the description of the nanoparticles transport effect in the present study. Local thermal non-equilibrium approach for the porous layer with the Brinkman-extended Darcy model has been used. Design/methodology/approach Dimensionless governing equations formulated using stream function, vorticity and temperature have been solved by the finite difference method. The effects of the Rayleigh number, Ostrogradsky number, Nield number and nanoparticles volume fraction on nanofluid flow, heat and mass transfer have been analyzed. Findings It has been revealed that the dimensionless heat transfer coefficient at the fluid/solid matrix interface can be a very good control parameter for the convective flow and heat transfer intensity. The present results are original and new for the study of non-equilibrium natural convection in a differentially-heated nanofluid cavity partially filled with a porous medium. Originality/value The results of this paper are new and original with many practical applications of nanofluids in the modern industry.


1973 ◽  
Vol 9 (2) ◽  
pp. 235-247 ◽  
Author(s):  
H. W. Bloomberg ◽  
H. L. Berk

The problem of the stability of inhomogeneous, electrostatic, multiple water-bag plasmas is considered. Equations are derived for general stationary water-bag equilibria, as well as for the corresponding perturbations. Particular attention is directed to systems with trapped particles in periodic equilibria, and special boundary conditions for the perturbation equations at the trapped-particle turning points are introduced. A normal-mode analysis is carried out for a configuration involving trapped particles occupying a finite region in the vicinity of the trough of an equilibrium wave (BGK mode). The results confirm the validity of the bunched-beam approximation.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
M. J. Kohl ◽  
M. Kristoffersen ◽  
F. A. Kulacki

Experiments are reported on initial instability, turbulence, and overall heat transfer in a porous medium heated from below. The porous medium comprises either water or a water-glycerin solution and randomly stacked glass spheres in an insulated cylinder of height:diameter ratio of 1.9. Heating is with a constant flux lower surface and a constant temperature upper surface, and the stability criterion is determined for a step heat input. The critical Rayleigh number for the onset of convection is obtained in terms of a length scale normalized to the thermal penetration depth as Rac=83/(1.08η−0.08η2) for 0.02<η<0.18. Steady convection in terms of the Nusselt and Rayleigh numbers is Nu=0.047Ra0.91Pr0.11(μ/μ0)0.72 for 100<Ra<5000. Time-averaged temperatures suggest the existence of a unicellular axisymmetric flow dominated by upflow over the central region of the heated surface. When turbulence is present, the magnitude and frequency of temperature fluctuations increase weakly with increasing Rayleigh number. Analysis of temperature fluctuations in the fluid provides an estimate of the speed of the upward moving thermals, which decreases with distance from the heated surface.


Sign in / Sign up

Export Citation Format

Share Document