scholarly journals A Method for Determining Intrinsic Mode Function Number in Variational Mode Decomposition and Its Application to Bearing Vibration Signal Processing

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shoujun Wu ◽  
Fuzhou Feng ◽  
Junzhen Zhu ◽  
Chunzhi Wu ◽  
Guang Zhang

Variational mode decomposition (VMD) method has been widely used in the field of signal processing with significant advantages over other decomposition methods in eliminating modal aliasing and noise robustness. The number (usually denoted by K) of intrinsic mode function (IMF) has a great influence on decomposition results. When dealing with signals including complex components, it is usually impossible for the existing methods to obtain correct results and also effective methods for determining K value are lacking. A method called center frequency statistical analysis (CFSA) is proposed in this paper to determine K value. CFSA method can obtain K value accurately based on center frequency histogram. To shed further light on its performance, we analyze the behavior of CFSA method with simulation signal in the presence of variable components amplitude, components frequency, and components number as well as noise amplitude. The normal and fault vibration signals obtained from a bearing experimental setup are used to verify the method. Compared with maximum center frequency observation (MCFO), correlation coefficient (CC), and normalized mutual information (NMI) methods, CFSA is more robust and accurate, and the center frequencies results are consistent with the main frequencies in FFT spectrum.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Cancan Yi ◽  
Yong Lv ◽  
Zhang Dang

Variational mode decomposition (VMD) is a new method of signal adaptive decomposition. In the VMD framework, the vibration signal is decomposed into multiple mode components by Wiener filtering in Fourier domain, and the center frequency of each mode component is updated as the center of gravity of the mode’s power spectrum. Therefore, each decomposed mode is compact around a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components affect the decomposition effect in VMD algorithm, a novel method of fault feature extraction based on the combination of VMD and particle swarm optimization (PSO) algorithm is proposed. In this paper, the numerical simulation and the measured fault signals of the rolling bearing experiment system are analyzed by the proposed method. The results indicate that the proposed method is much more robust to sampling and noise. Additionally, the proposed method has an advantage over the EMD in complicated signal decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with the common method of envelope spectrum analysis.


2012 ◽  
Vol 542-543 ◽  
pp. 234-237
Author(s):  
Ping Wang ◽  
De Xiang Zhang ◽  
Yan Li Liu

This paper applies the empirical mode decomposition (EMD) methods to gearbox vibration signal analysis capture from vibrating acceleration sensor for gearbox fault diagnosis. The original modulation fault vibration signals are firstly decomposed into a number of intrinsic mode function (IMF) by the EMD method. Then the fault information diagnosis of the gearbox vibration signals can be extracted from the coefficient-energy value of intrinsic mode function. Experiment result has shown the feasibility and efficiency of the EMD algorithms and energy characteristic method in fault diagnosis and fault message abstraction. It is significant for the monitor operating state of gearbox and detects incipient faults as soon as possible.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jianhua Cai ◽  
Xiaoqin Li

Aiming at the nonlinear and nonstationary feature of mechanical fault vibration signal, a new fault diagnosis method, which is based on a combination of empirical mode decomposition (EMD) and 1.5 dimension spectrum, is proposed. Firstly, the vibration signal is decomposed by EMD and the correlation coefficient between each intrinsic mode function and original signal is calculated. Then these intrinsic mode function components, which have a big correlation coefficient, are selected to estimate its 1.5 dimension spectrum. And this method uses 1.5 dimension spectrum of each intrinsic mode function to reconstruct its power spectrum. And these power spectrums are summed to obtain the primary power spectrum of gear fault signal. Finally, the information feature of fault is extracted from the reconstructed 1.5 dimension spectrum. A model to reconstruct 1.5 dimension spectrum is established, and the principle and steps of the method are presented. Some simulated and measured gear fault signals have been processed to demonstrate the effectiveness of new method. The result shows that this method can greatly inhibit the interference of Gauss noise to raise the SNR and recognize the secondary phase coupling feature of the signal. The proposed method has a good real-time performance and provides an effective method to determine the early crack fault of gear root.


2021 ◽  
Vol 15 ◽  
pp. 174830262110248
Author(s):  
Lingzhi Yi ◽  
You Guo ◽  
Nian Liu ◽  
Jian Zhao ◽  
Wang Li ◽  
...  

Catenary works as a key part in the electric railway traction power supply system, which is exposed outdoors for a long time and the failure rate is very high. Once a failure occurs, it will directly affect the driving safety. Based on the above, a model of identifying the health status for the catenary based on firefly algorithm optimized extreme learning machine combined with variational mode decomposition is proposed in this paper. Variational mode decomposition is used to decompose the original detection curve of catenary into a series of intrinsic mode function components, and the intrinsic mode function components filtered by the correlation coefficient method after decomposing each detection curve are input into the firefly algorithm optimized extreme learning machine model to realize health status identification. Compared with some other models, the results show that the proposed model has better health status identification effect.


2010 ◽  
Vol 40-41 ◽  
pp. 995-999 ◽  
Author(s):  
Wei Liu

In this paper, a new method of vibration signal analysis of coal and gangue based on Hilbert-Huang transform is presented. Empirical mode decomposition algorithm was used to decompose the original vibration signal of coal and gangue into the intrinsic modes for further extract useful information contained in response signals under complicated environment. By analyzing local Hilbert marginal spectrum and local energy spectrum of the first four intrinsic mode function components, we found the difference of coal and rock in specific frequency interval that the amplitude and energy mainly distributed at frequency interval between 100Hz and 600Hz when coal was drawn, while the amplitude and energy were more concentrated at 1000Hz or so when gangue was drawn. Furthermore, the further analysis result from marginal spectrum of each intrinsic mode function component agreed well with the conclusion above. So the extracted features with the propose approach can be served as coal and gangue interface recognition.


2021 ◽  
pp. 147592172110066
Author(s):  
Bin Pang ◽  
Mojtaba Nazari ◽  
Zhenduo Sun ◽  
Jiaying Li ◽  
Guiji Tang

The fault feature signal of rolling bearing can be characterized as the narrow-band signal with a specific resonance frequency. Therefore, resonance demodulation analysis is a powerful damage detection technique of bearings. In addition to the fault feature signal, the measured vibration signals carry various interference components, and these interference components become a serious obstacle of fault feature extraction. Variational mode extraction is a novel signal analysis method designed to retrieve a specific signal component from the composite signal. Variational mode extraction is founded on a similar basis as variational mode decomposition, while it shows better accuracy and higher efficiency compared with variational mode decomposition. In this study, variational mode extraction is introduced to the resonance demodulation analysis of bearing fault. As the results of variational mode extraction analysis are greatly influenced by the choice of two parameters, that is, the balancing factor α and the initial guess of center frequency ωd, an optimized variational mode extraction method is further developed. First, a new fault information evaluation index for measuring the richness of fault characteristics of the signal, termed ensemble impulsiveness and cyclostationarity, is formulated. Second, the ensemble impulsiveness and cyclostationarity is used as the fitness function of particle swarm optimization to automatically determine the optimal values of α and ωd. Finally, the validity of optimized variational mode extraction method is verified by simulated and experimental analysis, and the superiority of optimized variational mode extraction method is highlighted through comparison with two other advanced resonance demodulation analysis approaches, that is, the improved kurtogram and infogram. The analysis results indicate that optimized variational mode extraction method has a powerful capability of resonance demodulation analysis.


2010 ◽  
Vol 139-141 ◽  
pp. 2464-2468
Author(s):  
Yi Ming Wang ◽  
Shao Hua Zhang ◽  
Zhi Hong Zhang ◽  
Jing Li

The precision of transferring paper is key factors to decide the print overprint accuracy, and vibration has an important impact on paper transferring accuracy. Empirical mode decomposition (EMD) can be used to extract the features of vibration test signal. According to the intrinsic mode function (IMF) by extracted, it is useful to analyze the dynamic characteristics of swing gripper arm on motion state. Due to the actual conditions of printing, the vibration signal of Paper-Transferring mechanism system is complex quasi periodic signals. Hilbert-Huang marginal spectrum that is based on empirical mode decomposition can solve the problem which is modals leakage by FFT calculated in frequency domain. Through the experimental research, the phase information of impact load at the moment of grippers opening or closing, which can be used for the optimization design of Paper-Transferring system and the improvement in the accuracy of swing gripper arm.


2017 ◽  
Vol 86 ◽  
pp. 75-85 ◽  
Author(s):  
Yanxue Wang ◽  
Fuyun Liu ◽  
Zhansi Jiang ◽  
Shuilong He ◽  
Qiuyun Mo

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2949
Author(s):  
Changpeng Li ◽  
Tianhao Peng ◽  
Yanmin Zhu

During operation, the acoustic signal of the drum shearer contains a wealth of information. The monitoring or diagnosis system based on acoustic signal has obvious advantages. However, the signal is challenging to extract and recognize. Therefore, this paper proposes an approach for acoustic signal processing of a shearer based on the parameter optimized variational mode decomposition (VMD) method and a clustering algorithm. First, the particle swarm optimization (PSO) algorithm searched for the best parameter combination of the VMD. According to the results, the approach determined the number of modes and penalty parameters for VMD. Then the improved VMD algorithm decomposed the acoustic signal. It selected the ideal component through the minimum envelope entropy. The PSO was designed to optimize the clustering analysis, and the minimum envelope entropy of the acoustic signal was regarded as the feature for classification. We then use a shearer simulation platform to collect the acoustic signal and use the approach proposed in this paper to process and classify the signal. The experimental results show that the approach proposed can effectively extract the features of the acoustic signal of the shearer. The recognition accuracy of the acoustic signal was high, which has practical application value.


Sign in / Sign up

Export Citation Format

Share Document