scholarly journals Performance of Tightly Coupled Integration of GPS/BDS/MEMS-INS/Odometer for Real-Time High-Precision Vehicle Positioning in Urban Degraded and Denied Environment

2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Fei Liu ◽  
Houzeng Han ◽  
Xin Cheng ◽  
Binghao Li

Global Navigation Satellite System Real-Time Kinematic (GNSS-RTK) technology is widely used in vehicle navigation, but in complex environments such as urban high-rise street, wooded street, overpass, and tunnel, satellite signals are prone to attenuation or even unavailability. It brings great challenges to the continuous high-precision navigation. For this reason, a tightly coupled (TC) integration algorithm for GPS (Global Positioning System)/BDS (BeiDou Navigation Satellite System)/MEMS-INS (Micro-Electro-Mechanical System-Inertial Navigation System)/Odometer (GCIO) is proposed for vehicle navigation in complex urban environments. The accuracy improvement and ambiguity resolution (AR) performance are analysed in this research. First of all, the INS positioning error is constrained by fusion GPS/BDS (GC) and odometer; then, the predicted position information is used to aid GPS/BDS ambiguity resolution. In GNSS-denied environments, the odometer/INS integration is still carried out for continuous navigation. Real-time experiments are carried out in urban degraded and denied environments to validate the performance of the integrated system. In high-rise streets, the ambiguity fixing success rate of GCIO mode is 13.57% higher than that of GC mode. In the wooded street environment, the success rate has increased particularly significantly, by about 55 percent. The positioning accuracy analysis for open environment, high-rise street, wooded street, overpass, and tunnel is conducted. The experimental results show that in the above environment, the order of 0.1 m positioning accuracy can be achieved in the case of satellite outage for 1 minute, which can meet the positioning needs in most scenarios.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wanke Liu ◽  
Mingkui Wu ◽  
Xiaohong Zhang ◽  
Wang Wang ◽  
Wei Ke ◽  
...  

AbstractThe BeiDou global navigation satellite system (BDS-3) constellation deployment has been completed on June 23, 2020, with a full constellation comprising 30 satellites. In this study, we present the performance assessment of single-epoch Real-Time Kinematic (RTK) positioning with tightly combined BeiDou regional navigation satellite system (BDS-2) and BDS-3. We first investigate whether code and phase Differential Inter-System Biases (DISBs) exist between the legacy B1I/B3I signals of BDS-3/BDS-2. It is discovered that the DISBs are in fact about zero for the baselines with the same or different receiver types at their endpoints. These results imply that BDS-3 and BDS-2 are fully interoperable and can be regarded as one constellation without additional DISBs when the legacy B1I/B3I signals are used for precise relative positioning. Then we preliminarily evaluate the single-epoch short baseline RTK performance of tightly combined BDS-2 and the newly completed BDS-3. The performance is evaluated through ambiguity resolution success rate, ambiguity dilution of precision, as well as positioning accuracy in kinematic and static modes using the datasets collected in Wuhan. Experimental results demonstrate that the current BDS-3 only solutions can deliver comparable ambiguity resolution performance and much better positioning accuracy with respect to BDS-2 only solutions. Moreover, the RTK performance is much improved with tightly combined BDS-3/BDS-2, particularly in challenging or harsh conditions. The single-frequency single-epoch tightly combined BDS-3/BDS-2 solution could deliver an ambiguity resolution success rate of 96.9% even with an elevation cut-off angle of 40°, indicating that the tightly combined BDS-3/BDS-2 could achieve superior RTK positioning performance in the Asia–Pacific region. Meanwhile, the three-dimensional (East/North/Up) positioning accuracy of BDS-3 only solution (0.52 cm/0.39 cm/2.14 cm) in the kinematic test is significantly better than that of the BDS-2 only solution (0.85 cm/1.02 cm/3.01 cm) due to the better geometry of the current BDS-3 constellation. The tightly combined BDS-3/BDS-2 solution can provide the positioning accuracy of 0.52 cm, 0.22 cm, and 1.80 cm, respectively.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


2019 ◽  
Vol 11 (12) ◽  
pp. 1480 ◽  
Author(s):  
Cui ◽  
Yan ◽  
Deng ◽  
Tang ◽  
Zou ◽  
...  

The network real-time differential positioning technique is a good choice for meter and sub-meter level’s navigation. More attention has been paid to the Global Positioning System (GPS) and GPS + GLONASS (GLObal NAvigation Satellite System) network real-time differential positioning, but less on the GPS + BDS (BeiDou Navigation Satellite System) combination. This paper focuses on the GPS + BDS network real-time differential positioning. Since the noise of pseudorange observation is large, carrier-phase-smoothed pseudorange is usually used in the network real-time differential positioning to improve the positioning accuracy, while it will be interrupted once the satellite signal is lost or a cycle slip occurs. An improved algorithm in the position domain based on position variation information is proposed. The improved method is immune to the smoothing window and only depends on the number of available satellites. The performance of the network real-time differential positioning using the improved method is evaluated. The performance of GPS + BDS combination is compared with GPS-only solution as well. The results show that the positioning accuracy can be increased by around 10%–40% using the improved method compared with the traditional one. The improved method is less affected by the satellite constellation. The positioning accuracy of GPS + BDS solution is better than that of GPS-only solution, and can reach up to 0.217 m, 0.159 m and 0.330 m in the north, east and up components for the static user station, and 0.122 m, 0.133 m and 0.432 m for the dynamic user station. The positioning accuracy variation does not only depend on whether the user is inside or outside the network, but also on the position relation between the user and network.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fei Ye ◽  
Shuguo Pan ◽  
Wang Gao ◽  
Hao Wang ◽  
Chun Ma ◽  
...  

Vehicular dynamic positioning based on tightly coupled (TC) Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integration in urban areas is due to either low accuracy of pseudorange or poor continuity of carrier phase, resulting in insufficient positioning performance. To enhance the stability while ensuring positioning accuracy, this paper proposed a tightly coupled Beidou Navigation Satellite System (BDS)/INS integration scheme by improving measurement modelling with triple-frequency observations: first, a stepwise single-epoch ambiguity resolution of extra-wide-lane (EWL)/wide-lane (WL) combined observations and then modelling the measurement equation with fixed WL observation instead of conventional pseudorange or carrier phase. Experiments were carried out for verification with data collected in real traffic by a measurement vehicle. The proposed method achieved single-epoch output with an RMS statistical accuracy of decimetre level of 0.152 m horizontally and 0.196 m vertically. The signal outage experiment verified that the proposed algorithm is restoring high-accuracy positioning output in single-epoch once the signal is recaptured. The proposed method obtained a positioning accuracy improvement of 43.6% horizontally and 6.2% vertically in signal outage sections compared to the conventional method. This avoids the multiepoch ambiguity searching to fix with conventional carrier-phase processing, thereby improving the positioning stability.


2017 ◽  
Vol 21 (5) ◽  
pp. 783-792 ◽  
Author(s):  
Chun-Bao Xiong ◽  
Yan-Bo Niu ◽  
Zhi Li

This article aims to investigate the dynamic characteristics (e.g. natural frequency and damping ratio) for two super high-rise completed and uncompleted buildings. Real-time kinematic-global navigation satellite system technology is applied to observe the dynamic responses. To improve the positioning accuracy and avoid distortion of the results, a Type 1 Chebyshev high-pass digital filter is used. The natural frequencies and damping ratios of the buildings are determined using the fast Fourier transform analysis and random decrement technique combined with a logarithmic decrement method, respectively. The structural parameters are obtained. The results show that real-time kinematic-global navigation satellite system technology can provide the dynamic responses of super high-rise buildings in an efficient manner and that the dynamic characteristics from field measurements agree well with the results of the numerical simulation.


2021 ◽  
Vol 14 (1) ◽  
pp. 2
Author(s):  
Pengxu Wang ◽  
Hui Liu ◽  
Zhixin Yang ◽  
Bao Shu ◽  
Xintong Xu ◽  
...  

The BeiDou navigation satellite system (BDS-3) has been deployed and provides positioning, navigation, and timing (PNT) services for users all over the world. On the basis of BDS-2 system signals, BDS-3 adds B1C, B2a, B2b, and other signals to realize compatibility and interoperability with other global navigation satellite systems (GNSS). Network real-time kinematic (RTK) technology is an important real-time regional high-precision GNSS positioning technology. Combined with the network RTK high-precision service platform software developed by the author’s research group and the measured data of a provincial continuously operating reference station (CORS) in Hubei, this paper preliminarily evaluates the network RTK service performance under the new signal system of BDS-3. The results show that single BDS-3 adopts the new signal combination (B1C+B2a) and transition signal combination (B1I+B3I) when providing virtual reference station (VRS) services, the RTK fixation rate of the terminal is above 95%, and the horizontal and elevation accuracies are within 1cm and 2 cm, respectively, which meets the requirements of providing high-precision network RTK services by a single BDS-3 system. In addition, the positioning accuracy of BDS-2 is relatively poor, while the accuracy of BDS-3 is better than global positioning systems (GPS) and BDS-2. The combined processing effect of the B1I+B3I transition signal of BDS-2/3 is optimal, the accuracy of E and N directions is better than 0.5 cm, and the accuracy of U direction is better than 1.5 cm. It can be seen from the atmosphere correction accuracy, regional error modeling accuracy, and network RTK terminal positioning accuracy that the service effect of the B1C+B2a combination is slightly better than that of the B1I+B3I combination. When a single BDS-3 constellation provides network RTK services, it is recommended to use the B1C+B2a combination as the main frequency solution, and when the BDS-2/3 constellation provides service, it is recommended to use the B1I+B3I combination as the main frequency solution.


2021 ◽  
Vol 13 (19) ◽  
pp. 3905
Author(s):  
Xuanping Li ◽  
Lin Pan

The space segment of all the five satellite systems capable of providing precise position services, namely BeiDou Navigation Satellite System (BDS) (including BDS-3 and BDS-2), Global Positioning System (GPS), GLObal NAvigation Satellite System (GLONASS), Galileo and Quasi-Zenith Satellite System (QZSS), has almost been fully deployed at present, and the number of available satellites is approximately 136. Currently, the precise satellite orbit and clock products from the analysis centers European Space Agency (ESA), GeoForschungsZentrum Potsdam (GFZ) and Wuhan University (WHU) can support all five satellite systems. Thus, it is necessary to investigate the positioning performance of a five-system integrated precise point positioning (PPP) (i.e., GRECJ-PPP) using the precise products from different analysis centers under the current constellation status. It should be noted that this study only focuses on the long-term performance of PPP based on daily observations. The static GRECJ-PPP can provide a convergence time of 5.9–6.9/2.6–3.1/6.3–7.1 min and a positioning accuracy of 0.2–0.3/0.2–0.3/1.0–1.1 cm in east/north/up directions, respectively, while the corresponding kinematic statistics are 6.8–8.6/3.3–4.0/7.8–8.1 min and 1.0–1.1/0.8/2.5–2.6 cm in three directions, respectively. For completeness, although the real-time precise products from the analysis center Centre National d’Etudes Spatiales (CNES) do not incorporate QZSS satellites, the performance of real-time PPP with the other four satellite systems (i.e., GREC-PPP) is also analyzed. The real-time GREC-PPP can achieve a static convergence time of 8.7/5.2/11.2 min, a static positioning accuracy of 0.6/0.8/1.3 cm, a kinematic convergence time of 11.5/6.9/13.0 min, and a kinematic positioning accuracy of 1.7/1.6/3.6 cm in the three directions, respectively. For comparison, the results of single-system and dual-system PPP are also provided. In addition, the consistency of the precise products from different analysis centers is characterized.


2021 ◽  
Vol 13 (4) ◽  
pp. 629
Author(s):  
Zhiwei Qin ◽  
Le Wang ◽  
Guanwen Huang ◽  
Qin Zhang ◽  
Xingyuan Yan ◽  
...  

The positioning, navigation, and timing (PNT) service of the Global Navigation Satellite System (GNSS) is developing in the direction of real time and high precision. However, there are some problems that restrict the development of real-time and high-precision PNT technology. Satellite orbit maneuvering is one of the factors that reduce the reliability of real-time navigation products, especially the high-frequency orbit maneuvering of geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites. The BeiDou Navigation Satellite System (BDS) constellation is designed to contain GEO, IGSO, and medium earth orbit (MEO). These orbit maneuvers bring certain difficulties for data processing, especially for BeiDou satellites, such as decreased real-time service performance, which results in real-time navigation products including unusable maneuvered satellites. Additionally, the performance of real-time navigation products will decrease because the orbit maneuvers could not be known in advance, which diminishes the real-time PNT service performance of BDS for users. Common users cannot obtain maneuvering times and strategies owing to confidentiality, which can lead to a decline in the BDS real-time service performance. Thus, we propose a method to predict orbit maneuvers. BDS data from the broadcast ephemeris were analyzed to verify the availability of the proposed method. In addition, the results of real-time positioning were analyzed by using ultra-rapid orbit products, demonstrating that their reliability is improved by removing maneuvered satellites in advance. This is vital to improve the reliability of real-time navigation products and BDS service performance.


2021 ◽  
Vol 13 (4) ◽  
pp. 823
Author(s):  
Lin Zhao ◽  
Jiachang Jiang ◽  
Liang Li ◽  
Chun Jia ◽  
Jianhua Cheng

Since the traditional real-time kinematic positioning method is limited by the reduced satellite visibility from the deprived navigational environments, we, therefore, propose an improved RTK method with multiple rover receivers sharing a common clock. The proposed method can enhance observational redundancy by blending the observations from each rover receiver together so that the model strength will be improved. Integer ambiguity resolution of the proposed method is challenged in the presence of several inter-receiver biases (IRB). The IRB including inter-receiver code bias (IRCB) and inter-receiver phase bias (IRPB) is calibrated by the pre-estimation method because of their temporal stability. Multiple BeiDou Navigation Satellite System (BDS) dual-frequency datasets are collected to test the proposed method. The experimental results have shown that the IRCB and IRPB under the common clock mode are sufficiently stable for the ambiguity resolution. Compared with the traditional method, the ambiguity resolution success rate and positioning accuracy of the proposed method can be improved by 19.5% and 46.4% in the restricted satellite visibility environments.


Sign in / Sign up

Export Citation Format

Share Document