scholarly journals Mining Failure Response Characteristics of Stope Floor: A Case of Renlou Coal Mine

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jucai Chang ◽  
Dong Li ◽  
Kai He

Currently, shallow coal resources are being exhausted gradually, mining depth is continuing to extend downward, and hydrogeological conditions are becoming increasingly complex. Therefore, accurate determination of the failure floor position is necessary to perform multiple-seam mining. In this study, the 7255 working face of the Renlou coal mine is regarded as the research object. Through a comprehensive measurement of ground penetrating radar detection and fixed-point grating optical fibers, the law of floor deformation and failure is analyzed dynamically, and the characteristics of the floor rock deformation response are discussed. The results of on-site monitoring indicate that the mining effect of the working face is greater than that of the tectonic stress. With the advance of the working face, the deformation of the shallow area (0–8 m) first increases gradually, then increases rapidly, and finally increases gradually again; the middle area (8–19 m) experiences three stages, from a gentle increase to temporary stability and then a rapid increase; the deep area (19–29 m) undergoes three stages, from being stable to increasing and then being stable again. After mining, the floor of the working face can be classified into four areas in the vertical direction: complete failure area (0–5 m), poor severe influence area (5–11 m), failure development area (11–19 m), and elastic deformation area (19–29 m). Mining-induced stresses cause resistance at the interface of different lithologies and weaken the effect of downward propagation. Coal seams and the interface between different lithologies are more prone to deformation. The results can provide a certain reference basis for the advanced exploration scheme of the underlying seam mining under the multiple-seam mining method, as well as provide a new approach for floor failure depth measurement.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hao Liu ◽  
Pu Wang ◽  
Weihe Zhang ◽  
Qiang Liu ◽  
Lijun Su

The isolated island panel 10304 of the Xinglongzhuang coal mine was used as the research subject to study the deformation and damage characteristics of the coal seam floor. The damage of the floor was studied using the borehole strain sensing method and borehole imaging technology, and FLAC3D was used to study the influence of abutment pressure on floor failure. The result shows that the floor under the superimposed area which is affected by lateral and advanced abutment pressure is damaged firstly, and the maximum depth reaches 26 m, other areas of the working face about 23 m. The degree of deformation and failure of floor rock at different depths is decreased. The deformation damage increases with the advancement of the working face until a certain distance at the same depth. The hole image can clearly show the influence range of the abutment pressure in front of the coal wall and influence the degree of the advancement and lag by means of the strain increment curve for each sensor probe and the images from different drilled positions. On the basis that the results of simulation and field measurement are consistent, the results can reflect the three-dimensional failure characteristics of the whole island working face floor in the process of coal mining more comprehensively and accurately; moreover, they also can provide important information for mine flood prevention and ecological environment protection.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hao Zha ◽  
Weiqun Liu ◽  
Qinghong Liu

Due to inappropriate mining practices, water-conducting fracture zones can develop in an aquifer, not only destroying the surface-water environment but also causing water inrush, even hurting or killing workers. To avoid such disasters, investigating and simulating the evolution mechanism of water-conducting fractures are becoming a research focus in mining engineering, especially regarding the organisation and development of fractures. Our work mainly involved the design of low-strength analogous materials and the simulation of fracture evolution for weak-roof problems in shallow seam mining based on a self-built experimental hydromechanical coupling system. The experimental results show that the vertical stress in the roof increases first as the working face approaches and finally decreases to near its initial value as the working face passes. The relationship between fracture depth and coal-seam excavation distance is obviously nonlinear. The leakage velocity of surface water remains stable in the early stage of excavation and increases when the fracture develops through the main aquifuge. The maximum fracture depth is 76.18 m for the Yili coal mine with weak roofs and shallow coal seams. In addition, we numerically simulated and verified the evolution patterns with the FLAC3D platform. The simulated fracture depth of the Yili coal mine agreed with the in situ borehole observation very well and was more accurate than the output of the empirical formula. Our work provides new methods and relevant data for research on the evolution of water-conducting fractures in weak roofs during shallow seam mining.


2013 ◽  
Vol 275-277 ◽  
pp. 1564-1568
Author(s):  
Jian Feng Luo

Taking 1403 coal face of Fengjia coal mine in northern Shaanxi as background, put forward three supporting schemes of crossheading according to different buried depth and coal seam interval. Applying FLAC software, established relevant calculating model, analyzed the stress field and surrounding rock deformation caused by shallow seam mining before and after supporting. Combining the result from site monitoring, obtained the deformation law of crossheading surrounding rocks in the short distance seam: the vertical deformation is the main deformation under the A support scheme. The field tests showed that: the supporting schemes according to the section of crossheading is feasible and it ensured haulage gate roadway’s surrounding rocks stability , met the requirements of safety production in the coal mine, the supporting schemes of crossheading proposed in this paper has reference value to similar project.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Wang ◽  
Caiwang Tai ◽  
Qiaofeng Zhang ◽  
Zongwei Yang ◽  
Jiazheng Li ◽  
...  

AbstractLongwall top coal caving technology is one of the main methods of thick coal seam mining in China, and the classification evaluation of top coal cavability in longwall top coal caving working face is of great significance for improving coal recovery. However, the empirical or numerical simulation method currently used to evaluate the top coal cavability has high cost and low-efficiency problems. Therefore, in order to improve the evaluation efficiency and reduce evaluation the cost of top coal cavability, according to the characteristics of classification evaluation of top coal cavability, this paper improved and optimized the fuzzy neural network developed by Nauck and Kruse and establishes the fuzzy neural network prediction model for classification evaluation of top coal cavability. At the same time, in order to ensure that the optimized and improved fuzzy neural network has the ability of global approximation that a neural network should have, its global approximation is verified. Then use the data in the database of published papers from CNKI as sample data to train, verify and test the established fuzzy neural network model. After that, the tested model is applied to the classification evaluation of the top coal cavability in 61,107 longwall top coal caving working face in Liuwan Coal Mine. The final evaluation result is that the top coal cavability grade of the 61,107 longwall top coal caving working face in Liuwan Coal Mine is grade II, consistent with the engineering practice.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3295
Author(s):  
Yiming Yang ◽  
Ting Ai ◽  
Zetian Zhang ◽  
Ru Zhang ◽  
Li Ren ◽  
...  

Research on the mining-induced mechanical behavior and microcrack evolution of deep-mined coal has become increasingly important with the sharp increase in mining depth. For rock units in front of the working face, the microcrack evolution characteristics, structural characteristics, and stress state correspond well to mining layouts and depths under deep mining. The acoustic emission (AE) characteristics of typical coal under deep mining were obtained by conducting laboratory experiments to simulate mining-induced behavior and utilizing AE techniques to capture the variation in AE temporal and spatial parameters in real time, which provide an important basis for studying the rupture mechanisms and mechanical behavior of deep-mined coal. The findings were as follows: (1) AE activity under deep mining was characterized by three stages, corresponding to crack initiation, crack stable propagation, and crack unstable propagation. As the three stages proceeded, the AE counting rate and AE energy rate presented stronger clustering characteristics, and the cumulative AE counting and cumulative AE energy exhibited a sharp increase by an order of magnitude. (2) The crack initiation and the main stages of crack propagation were determined by characteristic points of variation curves in the AE parameters over time. In the main crack propagation stage, the number of cumulative AE events and the cumulative AE counts were similar among the three mining conditions, while coal samples under coal pillar mining released the largest amount of AE energy. The amount of accumulated AE energy released by coal samples increased by one order of magnitude according to the sequence of protective coal-seam mining, top-coal caving mining, and nonpillar mining. (3) Fractal technology was applied to quantitatively analyze the AE spatial evolution process, showing that the fractal dimension of the AE location decreased as the peak stress increased, corresponding to protective seam mining, caving-coal mining, and nonpillar mining. The above results showed that the deformation and fracture characteristics of coal under deep mining followed a general law, but were affected by different mining conditions. The crack initiation and main rupture activity of coal occurred earlier under the conditions of protective seam mining, top-coal caving mining, and nonpillar mining, successively. Moreover, nonpillar mining induced the strongest and highest degree of unstable rupture of the coal body in front of the working face.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanhui Du ◽  
Weitao Liu ◽  
Xiangxi Meng ◽  
Lifu Pang ◽  
Mengke Han

Hidden faults in deep coal seam floor threaten the exploitation of coal resources. Under the influence of mining and water confined in the floor, the cemented filler in the hidden fault will be eroded by water flow, in order to investigate the fracture characteristics and water inrush risk of hidden faults in floors above confined aquifer. Using the 27305 working face as geological background, the influence of the seepage scouring filler on the mechanism of water inrush from hidden faults was assessed by developing a stress-seepage coupling model and employing the finite difference method to simulate the seepage process of hidden faults under the combined action of high ground stress and high confined water. The evolution of seepage, shear stress, and plastic zone was also assessed. The influence of the hydraulic pressure of the aquifer and the thickness of a waterproof rock floor on the formation of the water inrush pathway was analyzed. Results indicate that (1) under the influence of mining, the hidden fault experienced the change process of stress stability, stress concentration, and stress release. The shear stress increases first and then decreases. The compressive stress decreases gradually due to stress release. (2) Water inrush disaster will not occur immediately when the working face is above the hidden fault. The delayed water inrush occurs in the mined-out area when the working face advances to 160 m, the floor failure zone is connected with the hidden fault failure zone, and the delayed water inrush channel is formed. (3) With the mining advances, the water pressure of aquifer is the same. The larger-angle fault leads to the thinner thickness of floor aquifer. The greater the influence of hidden fault on coal seam mining, the higher the danger of water inrush.


2012 ◽  
Vol 170-173 ◽  
pp. 106-109
Author(s):  
Zhao Ning Gao

According to the geology condition of 1028 face in Suntuan Coal Mine of Huaibei Mining Group, evolution law of stress and displacement of water-resisting floor along with working face ad-vancement was studied. The results show that the stress and the displacement of the floor change dynamically , the displacement in the front and back of working face ,and the difference of displacement result from stress concentration before mining ,relief pressure after mining , superpo-sition effect of additive stress caused by the additional stress in stress recovery . The measures to re-duce the coal floor damage were proposed.


2013 ◽  
Vol 275-277 ◽  
pp. 999-1002 ◽  
Author(s):  
Lei Han ◽  
Xiang Rui Meng

In order to study the floor damage depth of 7122 working face in the Qinan Coal Mine, we used Key strata theory and elastic-plastic theory to analyze the activities mechanisms and characteristics of the surrounding rock. By theoretical calculation obtained floor strata failure depth 8.79m of 7122 Face Mining; The horizontal distance of from the greatest floor damage depth to the coal wall is about 5.71m; The goaf floor failure distance is about 25.44m. Combined with the results of plasticity theory, we had drawn floor damage feature maps of 7122 working face in Qinan Coal Mine.


2021 ◽  
Vol 113 ◽  
pp. 103972
Author(s):  
Chao Zhang ◽  
Gaohan Jin ◽  
Chao Liu ◽  
Shugang Li ◽  
Junhua Xue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document