scholarly journals Applying the Large Parameter Technique for Solving a Slow Rotary Motion of a Disc about a Fixed Point

2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
A. I. Ismail

In this paper, the motion of a disk about a fixed point under the influence of a Newtonian force field and gravity one is considered. We modify the large parameter technique which is achieved by giving the body a sufficiently small angular velocity component r0 about the fixed z-axis of the disk. The periodic solutions of motion are obtained in the neighborhood r0 tends to 0. This case of study is excluded from the previous works because of the appearance of a singular point in the denominator of the obtained solutions. Euler-Poison equations of motion are obtained with their first integrals. These equations are reduced to a quasilinear autonomous system of two degrees of freedom and one first integral. The periodic solutions for this system are obtained under the new initial conditions. Computerizing the obtained periodic solutions through a numerical technique for validation of results is done. Two types of analytical and numerical solutions in the new domain of the angular velocity are obtained. Geometric interpretations of motion are presented to show the orientation of the body at any instant of time t.

2021 ◽  
Vol 29 (1) ◽  
Author(s):  
A. I. Ismail

AbstractIn the previous works, the limiting case for the motion of a rigid body about a fixed point in a Newtonian force field, which comes from a gravity center lies on Z-axis, is solved. The authors apply the small parameter technique which is achieved giving the body a sufficiently large angular velocity component ro about the fixed z-axis of the body. The periodic solutions of motion are obtained in neighborhood ro tends to $$\infty$$ ∞ . In our work, we aim to find periodic solutions to the problem of motion in the neighborhood of r0 tends to $$0$$ 0 . So, we give a new assumption that: ro is sufficiently small. Under this assumption, we must achieve a large parameter and search for another technique for solving this problem. This technique is named; a large parameter technique instead of the small one well known previously. We see the advantage of the new technique which appears in saving high energy used to begin the motion and give the solution of the problem in another domain. The obtained solutions by the new technique depend on ro. We consider that the center of mass of this body does not necessarily coincide with the fixed point O. We reduce the six nonlinear differential equations of the body and their three first integrals to a quasilinear autonomous system of two degrees of freedom and one first integral. We solve the rational case when the frequencies of the generating system are rational except $$(\,\omega = \,1,\,2,1/2,3,1/3, \ldots )$$ ( ω = 1 , 2 , 1 / 2 , 3 , 1 / 3 , … ) under the condition $$\gamma^{\prime\prime}_{0} = \cos \theta_{o} \approx 0$$ γ 0 ″ = cos θ o ≈ 0 . We use the fourth-order Runge–Kutta method to find the periodic solutions in the closed interval of the time t and to compare the analytical method with the numerical one.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
A. I. Ismail

In this paper, we consider the dynamical description of a pendulum model consists of a heavy solid connection to a nonelastic string which suspended on an elliptic path in a vertical plane. We suppose that the dimensions of the solid are large enough to the length of the suspended string, in contrast to previous works which considered that the dimensions of the body are sufficiently small to the length of the string. According to this new assumption, we define a large parameter ε and apply Lagrange’s equation to construct the equations of motion for this case in terms of this large parameter. These equations give a quasi-linear system of second order with two degrees of freedom. The obtained system will be solved in terms of the generalized coordinates θ and φ using the large parameter procedure. This procedure has an advantage over the other methods because it solves the problem in a new domain when fails all other methods for solving the problem in such a domain under these conditions. It is one of the most important applications, when we study the slow spin motion of a rigid body in a Newtonian field of force under an external moment or the rotational motion of a heavy solid in a uniform gravity field or the gyroscopic motions with a sufficiently small angular velocity component about the major or the minor axis of the ellipsoid of inertia. There are many applications of this technique in aerospace science, satellites, navigations, antennas, and solar collectors. This technique is also useful in all perturbed problems in physics and mechanics, for example, the perturbed pendulum motions and the perturbed mechanical systems. The results of this paper also are useful in moving bridges and the swings. For satisfying the validation of the obtained solutions, we consider numerical considerations by one of the numerical methods and compare the obtained analytical and numerical solutions.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
T. S. Amer

In this paper, we will focus on the dynamical behavior of a rigid body suspended on an elastic spring as a pendulum model with three degrees of freedom. It is assumed that the body moves in a rotating vertical plane uniformly with an arbitrary angular velocity. The relative periodic motions of this model are considered. The governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of second-order differential equations that can be solved in terms of generalized coordinates. The numerical solutions are investigated using the fourth-order Runge-Kutta algorithms through Matlab packages. These solutions are represented graphically in order to describe and discuss the behavior of the body at any instant for different values of the physical parameters of the body. The obtained results have been discussed and compared with some previous published works. Some concluding remarks have been presented at the end of this work. The importance of this work is due to its numerous applications in life such as the vibrations that occur in buildings and structures.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
A. I. Ismail

The small parameter method was applied for solving many rotational motions of heavy solids, rigid bodies, and gyroscopes for different problems which classify them according to certain initial conditions on moments of inertia and initial angular velocity components. For achieving the small parameter method, the authors have assumed that the initial angular velocity is sufficiently large. In this work, it is assumed that the initial angular velocity is sufficiently small to achieve the large parameter instead of the small one. In this manner, a lot of energy used for making the motion initially is saved. The obtained analytical periodic solutions are represented graphically using a computer program to show the geometric periodicity of the obtained solutions in some interval of time. In the end, the geometric interpretation of the stability of a motion is given.


1995 ◽  
Vol 62 (3) ◽  
pp. 740-746 ◽  
Author(s):  
V. Bhatt ◽  
J. Koechling

The equations of motion that define three-dimensional rigid-body impact with finite friction and restitution cannot be solved in a closed form. Previous work has shown that for general shapes and initial conditions, the direction of sliding velocity keeps changing continuously throughout the duration of impact. The flow patterns defined by the trace of the sliding velocity can be classified into a finite number of qualitatively distinct physical behavior. We identify three dimensionless parameters that completely specify the sliding behavior, and determine regions in this parameter space that correspond to each of the different flow patterns. The qualitative behavior during impact can now be determined based on the region which contains the parameters for a given impact configuration. The analysis is also used to study the sensitivity of the sliding behavior to changes in shape or configuration of the body and to rule out the occurrence of certain ambiguities in the post-sticking behavior during impact.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
A. I. Ismail

In this paper, we present new modifications for some perturbation procedures used in mathematics, physics, astronomy, and engineering. These modifications will help us to solve the previous problems in different sciences under new conditions. As problems, we have, for example, the rotary rigid body problem, the gyroscopic problem, the pendulum motion problem, and other ones. These problems will be solved in a new manner different from the previous treatments. We solve some of the previous problems in the presence of new conditions, new analysis, and new domains. We let complementary conditions of such studied previously. We solve these problems by applying the large parameter technique used by assuming a large parameter which inversely proportional to a small quantity. For example, in rigid body dynamic problems, we take such quantity to be one of the components of the angular velocity vector in the initial instant of the rotary body about a fixed point. The domain of our solutions will be depending on the choice of a large parameter. The problem of slow (weak) oscillations is considered. So, we obtain slow motions of the bodies instead of fast motions and find the solutions of the problem in present new conditions on both of center of gravity, moments of inertia, and the angular velocity vector or one of these parameters of the body. This study is important for aerospace engineering, gyroscopic motions, satellite motion which has the correspondence of inertia moments, antennas, and navigations.


2021 ◽  
Vol 7 (2) ◽  
pp. 97-101
Author(s):  
H. P. Kandel ◽  
J. Kafle ◽  
L. P. Bagale

Many physical problems, such as heat transfer and wave transfer, are modeled in the real world using partial differential equations (PDEs). When the domain of such modeled problems is irregular in shape, computing analytic solution becomes difficult, if not impossible. In such a case, numerical methods can be used to compute the solution of such PDEs. The Finite difference method (FDM) is one of the numerical methods used to compute the solutions of PDEs by discretizing the domain into a finite number of regions. We used FDMs to compute the numerical solutions of the one dimensional heat equation with different position initial conditions and multiple initial conditions. Blacksmiths fashioned different metals into the desired shape by heating the objects with different temperatures and at different position. The numerical technique applied here can be used to solve heat equations observed in the field of science and engineering.


2021 ◽  
Author(s):  
Alexander Frias

This dissertation investigates the nonlinear control of the attitude for an underactuated rigid-body spacecraft system in the body-orbital and inertial frames. The problem involving the stabilization of the body-orbital attitude of an underactuated output-feedback system is examined. Using sliding mode control in conjunction with finite-time nonlinear observer, a novel observer-based control law is rigorously analyzed and proven to achieve attitude convergence. Under time-varying disturbances, inertia matrix uncertainties, and high initial errors, the proposed novel law achieves attitude convergence for three-axis stability and ultimate boundedness within 5 degrees and 0.01 deg/s, for attitude error norm and angular velocity norm, respectively. Next, the attitude control problem is rigorously analyzed in the inertial frame, where the underactuated rigid-body spacecraft system equations of motion are highly nonlinear, and the linearized equations of motion are not controllable. To this end, a generalized velocity-free time-varying state feedback controller is developed to achieve globally exponential stability with respect to the homogenous norm and proven to provide ultimate boundedness of all signals with 5 degrees attitude error norm and 0.5 rad/s angular velocity error norm. Finally, the inertial frame attitude stabilization problem is treated as an optimal control problem. For this case, the Legendre pseudospectral method is used to discretized the spacecraft dynamics into Legendre-Gauss-Lobatto (LGL) node points, where the Lagrange polynomial interpolation is applied to obtain a suitable candidate optimal control sequence. Model predictive control is used to implement the optimal control in predefined control windows sequentially to achieve three-axis stability for a rest-to-rest maneuver within 0.3 orbit.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
A. I. Ismail

In this paper, the problem of the motion of a rigid body about a fixed point under the action of a Newtonian force field is studied when the natural frequency ω = 0.5 . This case of singularity appears in the previous works and deals with different bodies which are classified according to the moments of inertia. Using the large parameter method, the periodic solutions for the equations of motion of this problem are obtained in terms of a large parameter, which will be defined later. The geometric interpretation of the considered motion will be given in terms of Euler’s angles. The numerical solutions for the system of equations of motion are obtained by one of the well-known numerical methods. The comparison between the obtained numerical solutions and analytical ones is carried out to show the errors between them and to prove the accuracy of both used techniques. In the end, we obtain the case of the regular precession type as a special case. The stability of the motion is considered by the phase diagram procedures.


Author(s):  
Ghadir Ahmed Sahli

In this study، the rotational motion of a rigid body about a fixed point in the Newtonian force field with a gyrostatic momentum  about the z-axis is considered. The equations of motion and their first integrals are obtained and reduced to a quasi-linear autonomous system with two degrees of freedom with one first integral. Poincare's small parameter method is applied to investigate the analytical peri­odic solutions of the equations of motion of the body with one point fixed، rapidly spinning about one of the principal axes of the ellipsoid of inertia. A geometric interpretation of motion is given by using Euler's angles to describe the orientation of the body at any instant of time.


Sign in / Sign up

Export Citation Format

Share Document