scholarly journals CO2 Utilization Process Simulation for Enhancing Production of Dimethyl Ether (DME)

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sutrasno Kartohardjono ◽  
Bayu Sari Adji ◽  
Yuswan Muharam

Increase in the world energy demand also increases the concentration of CO2 in the atmosphere, which contributes to global warming and ocean acidification. This study proposed the simulation process to utilize CO2 released from the acid gas removal unit in one of gas processing plants in Indonesia to enhance the production of dimethyl ether (DME) through unreacted gas recycle that can be beneficial in reducing CO2 emission to the atmosphere. Simulation was developed in Unisim R390.1 using Peng–Robinson–Stryjek–Vera (PRSV) as a fluid package. Simulation was validated by several studies conducted by many researchers and giving satisfactory results especially in terms of productivity, conversion, and selectivity as a function of reactor temperatures in the indirect and the direct DME synthesis processes. Simulation results show that the DME production was enhanced by around 49.6% and 65.1% for indirect and direct processes, respectively, at a recycling rate of 7 MMSCFD. Compressor is required to increase the unreacted gas pressure to the desired pressure in the methanol reactor or dual methanol-DME reactor in both processes. Specific power consumption (SPC) was used as a tested parameter for the effectiveness of recycling unreacted gas. Based on the simulation, the direct DME synthesis process is superior over the indirect process in terms of DME and methanol productions, SPCs, and system energy efficiencies.

Author(s):  
Aristide Giuliano ◽  
Enrico Catizzone ◽  
Cesare Freda

The production of dimethyl ether from renewables or waste is a promising strategy to push towards a sustainable energy transition of alternative eco-friendly diesel fuel. In this work, we simulate the synthesis of dimethyl ether from a syngas (a mixture of CO, CO2 and H2) produced from gasification of digestate. In particular, a thermodynamic analysis was performed to individuate the best process conditions and syngas conditioning processes to maximize yield to dimethyl etehr (DME). Process simulation was carried out by ChemCAD software, and it was particularly focused on the effect of process conditions of both water gas shift and CO2 absorption by Selexol® on the syngas composition, with a direct influence on DME productivity. The final best flowsheet and the best process conditions were evaluated in terms of CO2 equivalent emissions. Results show direct DME synthesis global yield was higher without the WGS section and with a carbon capture equal to 85%. The final environmental impact was found equal to −113 kgCO2/GJ, demonstrating that DME synthesis from digestate may be considered as a suitable strategy for carbon dioxide recycling.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Umer Zahid

AbstractMost of the industrial acid gas removal (AGR) units employ chemical absorption process for the removal of acid gases from the natural gas. In this study, two gas processing plants operational in Saudi Arabia have been selected where two different amines n1amely, diglycolamine (DGA) and monoethanol amine (MDEA) are used to achieve the sweet gas purity with less than 4 ppm of H2S. This study performed a feasibility simulation of AGR unit by utilizing the amine blend (DGA+MDEA) for both plants instead of a single amine. The study used a commercial process simulator to analyze the impact of process variables such as amine circulation rate, amine strength, lean amine temperature, regenerator inlet temperature, and absorber and regenerator pressure on the process performance. The results reveal that when the MDEA (0–15 wt. %) is added to DGA, marginal energy savings can be achieved. However, significant operational energy savings can be made when the DGA (0–15 wt. %) is blended with MDEA being the main amine.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2412
Author(s):  
Francisco Ruiz-Jorge ◽  
Almudena Benítez ◽  
M. Belén García-Jarana ◽  
Jezabel Sánchez-Oneto ◽  
Juan R. Portela ◽  
...  

Lithium-ion batteries (LIBs) have gained much interest in recent years because of the increasing energy demand and the relentless progression of climate change. About 30% of the manufacturing cost for LIBs is spent on cathode materials, and its level of development is lower than the negative electrode, separator diaphragm and electrolyte, therefore becoming the “controlling step”. Numerous cathodic materials have been employed, LiFePO4 being the most relevant one mainly because of its excellent performance, as well as its rated capacity (170 mA·h·g−1) and practical operating voltage (3.5 V vs. Li+/Li). Nevertheless, producing micro and nanoparticles with high purity levels, avoiding the formation of iron oxides, and reducing the operating cost are still some of the aspects still to be improved. In this work, we have applied two heating rates (slow and fast) to the same hydrothermal synthesis process with the main objective of obtaining, without any reducing agents, the purest possible LiFePO4 in the shortest time and with the lowest proportion of magnetite impurities. The reagents initially used were: FeSO4, H3PO4, and LiOH, and a crucial phenomenon has been observed in the temperature range between 130 and 150 °C, being verified with various techniques such as XRD and SEM.


Author(s):  
Altan Kolbay

In this chapter, the correlation of growth in population, economic welfare, and increase in the energy demand is evaluated with examples. The biggest concern of mankind is which sources cover the immense energy demand. It is obvious that fossil fuels are the base energy source, and in order to supply developing energy needs, serious investments are needed in the energy sector. That is why the results of monetary aspects in energy prices and the conditions in leading supplier countries are also evaluated.


Author(s):  
Morgandi Tibisay ◽  
Viñuales Jorge E

This chapter investigates the concept of ‘energy security’, understood as the ‘uninterrupted availability of energy resources at an affordable price’. Importantly, according to this definition, the ‘availability’ of energy resources is measured against existing energy demand, and threats to energy security are therefore threats to the supply of enough energy to meet existing energy demand. Energy supply depends upon both domestic and international factors which are so interconnected that it is difficult to distinguish where one starts and the other ends. What is clear, however, is that international law plays a fundamental role in addressing many threats to energy security. The chapter looks at existing threats to energy security and the international legal frameworks that have been established in response. The challenges to energy security include an exponential increase in world energy demand, shortages of national oil and gas deposits, the need to reduce dependence on fossil fuel production in order to counteract climate change, as well as risks of geopolitical instability. The chapter then focuses on the mechanisms aimed to ensure that the flow of energy remains uninterrupted and at an affordable price, as well as on those mechanisms aimed at increasing access to energy resources.


Sign in / Sign up

Export Citation Format

Share Document