scholarly journals Effect of the Heating Rate to Prevent the Generation of Iron Oxides during the Hydrothermal Synthesis of LiFePO4

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2412
Author(s):  
Francisco Ruiz-Jorge ◽  
Almudena Benítez ◽  
M. Belén García-Jarana ◽  
Jezabel Sánchez-Oneto ◽  
Juan R. Portela ◽  
...  

Lithium-ion batteries (LIBs) have gained much interest in recent years because of the increasing energy demand and the relentless progression of climate change. About 30% of the manufacturing cost for LIBs is spent on cathode materials, and its level of development is lower than the negative electrode, separator diaphragm and electrolyte, therefore becoming the “controlling step”. Numerous cathodic materials have been employed, LiFePO4 being the most relevant one mainly because of its excellent performance, as well as its rated capacity (170 mA·h·g−1) and practical operating voltage (3.5 V vs. Li+/Li). Nevertheless, producing micro and nanoparticles with high purity levels, avoiding the formation of iron oxides, and reducing the operating cost are still some of the aspects still to be improved. In this work, we have applied two heating rates (slow and fast) to the same hydrothermal synthesis process with the main objective of obtaining, without any reducing agents, the purest possible LiFePO4 in the shortest time and with the lowest proportion of magnetite impurities. The reagents initially used were: FeSO4, H3PO4, and LiOH, and a crucial phenomenon has been observed in the temperature range between 130 and 150 °C, being verified with various techniques such as XRD and SEM.

2016 ◽  
Vol 18 (44) ◽  
pp. 30630-30642 ◽  
Author(s):  
Yan Feng ◽  
Yuliang Zhang ◽  
Yuzhen Wei ◽  
Xiangyun Song ◽  
Yanbo Fu ◽  
...  

A simple route for the preparation of ZnS nanocrystal/reduced graphene oxide (ZnS/RGO) by a hydrothermal synthesis process was achieved.


2019 ◽  
Vol 48 (5) ◽  
pp. 1906-1914 ◽  
Author(s):  
Wenwen Chai ◽  
Fan Yang ◽  
Weihao Yin ◽  
Shunzhang You ◽  
Ke Wang ◽  
...  

Bi2S3 is a promising negative electrode material for lithium storage owing to its high theoretical capacity. During the Bi2S3/C synthesis process, the carbonization of H3BTC prevents aggregation of Bi2S3 particles, with an average diameter of 60 nm.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3796
Author(s):  
Mudassar Azam ◽  
Asma Ashraf ◽  
Saman Setoodeh Setoodeh Jahromy ◽  
Sajjad Miran ◽  
Nadeem Raza ◽  
...  

In connection to present energy demand and waste management crisis in Pakistan, refuse-derived fuel (RDF) is gaining importance as a potential co-fuel for existing coal fired power plants. This research focuses on the co-combustion of low-quality local coal with RDF as a mean to reduce environmental issues in terms of waste management strategy. The combustion characteristics and kinetics of coal, RDF, and their blends were experimentally investigated in a micro-thermal gravimetric analyzer at four heating rates of 10, 20, 30, and 40 °C/min to ramp the temperature from 25 to 1000 °C. The mass percentages of RDF in the coal blends were 10%, 20%, 30%, and 40%, respectively. The results show that as the RDF in blends increases, the reactivity of the blends increases, resulting in lower ignition temperatures and a shift in peak and burnout temperatures to a lower temperature zone. This indicates that there was certain interaction during the combustion process of coal and RDF. The activation energies of the samples were calculated using kinetic analysis based on Kissinger–Akahira–Sunnose (KAS) and Flynn–Wall–Ozawa (FWO), isoconversional methods. Both of the methods have produced closer results with average activation energy between 95–121 kJ/mol. With a 30% refuse-derived fuel proportion, the average activation energy of blends hit a minimum value of 95 kJ/mol by KAS method and 103 kJ/mol by FWO method.


Carbon ◽  
2021 ◽  
Vol 176 ◽  
pp. 655
Author(s):  
Tomokazu Fukutsuka ◽  
Yuto Miyahara ◽  
Kohei Miyazaki ◽  
Takeshi Abe

2021 ◽  
Author(s):  
Yifan Song ◽  
Boyi Xie ◽  
Shuya Lei ◽  
Shaole Song ◽  
Wei Sun ◽  
...  

As a widely used power battery, the scrapping boom of LiFePO4 (LFP) battery is coming. Both pyrometallurgical repair and hydrometallurgical processes have been applied in the recycling of spent LFP...


Nano Research ◽  
2021 ◽  
Author(s):  
Qiang Guo ◽  
Wei Deng ◽  
Shengjie Xia ◽  
Zibo Zhang ◽  
Fei Zhao ◽  
...  

AbstractUncontrollable dendrite growth resulting from the non-uniform lithium ion (Li+) flux and volume expansion in lithium metal (Li) negative electrode leads to rapid performance degradation and serious safety problems of lithium metal batteries. Although N-containing functional groups in carbon materials are reported to be effective to homogenize the Li+ flux, the effective interaction distance between lithium ions and N-containing groups should be relatively small (down to nanometer scale) according to the Debye length law. Thus, it is necessary to carefully design the microstructure of N-containing carbon materials to make the most of their roles in regulating the Li+ flux. In this work, porous carbon nitride microspheres (PCNMs) with abundant nanopores have been synthesized and utilized to fabricate a uniform lithiophilic coating layer having hybrid pores of both the nano- and micrometer scales on the Cu/Li foil. Physically, the three-dimensional (3D) porous framework is favorable for absorbing volume changes and guiding Li growth. Chemically, this coating layer can render a suitable interaction distance to effectively homogenize the Li+ flux and contribute to establishing a robust and stable solid electrolyte interphase (SEI) layer with Li-F, Li-N, and Li-O-rich contents based on the Debye length law. Such a physical-chemical synergic regulation strategy using PCNMs can lead to dendrite-free Li plating, resulting in a low nucleation overpotential and stable Li plating/stripping cycling performance in both the Li‖Cu and the Li‖Li symmetric cells. Meanwhile, a full cell using the PCNM coated Li foil negative electrode and a LiFePO4 positive electrode has delivered a high capacity retention of ∼ 80% after more than 200 cycles at 1 C and achieved a remarkable rate capability. The pouch cell fabricated by pairing the PCNM coated Li foil negative electrode with a NCM 811 positive electrode has retained ∼ 73% of the initial capacity after 150 cycles at 0.2 C.


2020 ◽  
Vol 49 (4) ◽  
pp. 1167-1172 ◽  
Author(s):  
Pengcheng Wang ◽  
Peng Zhang ◽  
Xiaohang Zheng ◽  
Jian Cao ◽  
Yang Liu ◽  
...  

With the increasing energy demand, it is very urgent to develop new anode materials for lithium ion batteries (LIBs).


Sign in / Sign up

Export Citation Format

Share Document