scholarly journals A Survey of Soft Computing Approaches in Biomedical Imaging

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Manju Devi ◽  
Sukhdip Singh ◽  
Shailendra Tiwari ◽  
Subhash Chandra Patel ◽  
Melkamu Teshome Ayana

Medical imaging is an essential technique for the diagnosis and treatment of diseases in modern clinics. Soft computing plays a major role in the recent advances in medical imaging. It handles uncertainties and improves the qualities of an image. Until now, various soft computing approaches have been proposed for medical applications. This paper discusses various medical imaging modalities and presents a short review of soft computing approaches such as fuzzy logic, artificial neural network, genetic algorithm, machine learning, and deep learning. We also studied and compared each approach used for other imaging modalities based on the certain parameter used for the system evaluation. Finally, based on comparative analysis, the possible research strategies for further development are proposed. As far as we know, no previous work examined this issue.

2017 ◽  
Vol 7 (1.1) ◽  
pp. 184
Author(s):  
Rincy Merlin Mathew ◽  
S. Purushothaman ◽  
P. Rajeswari

This article presents the implementation of vegetation segmentation by using soft computing methods: particle swarm optimization (PSO), echostate neural network(ESNN) and genetic algorithm (GA). Multispectral image with the required band from Landsat 8 (5, 4, 3) and Landsat 7 (4, 3, 2) are used. In this paper, images from ERDAS format acquired by Landsat 7 ‘Paris.lan’ (band 4, band 3, Band 2) and image acquired from Landsat 8 (band5, band 4, band 3) are used. The soft computing algorithms are used to segment the plane-1(Near infra-red spectra) and plane 2(RED spectra). The monochrome of the two segmented images is compared to present performance comparisons of the implemented algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Lukas Falat ◽  
Dusan Marcek ◽  
Maria Durisova

This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined withK-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.


2020 ◽  
Author(s):  
Zihan Zeng ◽  
Bo Wang ◽  
Zhiwen Zhao

In this research, an optimized deep learning method was proposed to explore the possibility and practicality of neural network applications in medical imaging. The method was used to achieve the goal of judging common pneumonia and even COVID-19 more effectively. Where, the genetic algorithm was taken advantage to optimize the Dropout module, which is essential in neural networks so as to improve the performance of typical neural network models. The experiment results demonstrate that the proposed method shows excellent performance and strong practicability in judging pneumonia, and the application of advanced artificial intelligence technology in the field of medical imaging has broad prospects.


Author(s):  
Takehisa Onisawa ◽  

This paper mentions the concept of Kansei information that must be dealt with in multimedia. Kansei information has subjectivity, ambiguity, vagueness and situation dependence. This piece of information is not dealt with by the conventional natural science techniques. This paper also introduces soft computing techniques such as a neural network model, fuzzy set theory, a fuzzy measures and fuzzy integrals model, and the interactive genetic algorithm approach that are applied to Kansei information processing or some related problems.


Author(s):  
Renqiang Wang ◽  
Qinrong Li ◽  
Shengze Miao ◽  
Keyin Miao ◽  
Hua Deng

Abstract: The purpose of this paper was to design an intelligent controller of ship motion based on sliding mode control with a Radial Basis Function (RBF) neural network optimized by the genetic algorithm and expansion observer. First, the improved genetic algorithm based on the distributed genetic algorithm with adaptive fitness and adaptive mutation was used to automatically optimize the RBF neural network. Then, with the compensation designed by the RBF neural network, anti-saturation control was realized. Additionally, the intelligent control algorithm was introduced by Sliding Mode Control (SMC) with the stability theory. A comparative study of sliding mode control integrated with the RBF neural network and proportional–integral–derivative control combined with the fuzzy optimization model showed that the stabilization time of the intelligent control system was 43.75% faster and the average overshoot was reduced by 52% compared with the previous two attempts. Background: It was known that the Proportional-Integral-Derivative (PID) control and self-adaptation control cannot really solve the problems of frequent disturbance from external wind and waves, as well as the problems with ship nonlinearity and input saturation. So, the previous ship motion controller should be transformed by advanced intelligent technology, on the basis of referring to the latest relevant patent design methods. Objective: An intelligent controller of ship motion was designed based on optimized Radial Basis Function Neural Network (RBFNN) in the presence of non-linearity, uncertainty, and limited input. Methods: The previous ship motion controller was remodeled based on Sliding Mode Control (SMC) with RBFNN optimized by improved genetic algorithm and expansion observer. The intelligent control algorithm integrated with genetic neural network solved the problem of system model uncertainty, limited control input, and external interference. Distributed genetic with adaptive fitness and adaptive mutation method guaranteed the adequacy of search and the global optimal convergence results, which enhanced the approximation ability of RBFNN. With the compensation designed by the optimized RBFNN, it was realized anti-saturation control. The chattering caused by external disturbance in SMC controller was reduced by the expansion observer. Results: A comparative study with RBFNN-SMC control and fuzzy-PID control, the stabilization time of the intelligent control system was 43.75% faster, the average overshoot was reduced by 52%, compared to the previous two attempts. Conclusion: The intelligent control algorithm succeed in dealing with the problems of nonlinearity, uncertainty, input saturation, and external interference. The intelligent control algorithm can be applied into research and development ship steering system, which would be created a new patent.


Sign in / Sign up

Export Citation Format

Share Document