scholarly journals Numerical Investigation for Radiative Transport in Magnetized Flow of Nanofluids due to Moving Surface

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hassan Waqas ◽  
Shan Ali Khan ◽  
Metib Alghamdi ◽  
Taseer Muhammad

In this article, we examined the magnetized flow of ethylene glycol- 50 − 50 % water-based nanoliquids comprising molybdenum disulfide ( MoS 2 ) across a stretching sheet. Flow properties were examined under the impacts of magnetic field and thermal radiation. The behavior of heat generation/absorption is also accounted. Similarity transformations are used on the system of PDEs to get nondimensional ODEs. The obtained nondimensional ODEs are solved with the help of the Runge–Kutta–Fehlberg method via computational software MATHEMATICA. The behavior of prominent parameters for velocity and thermal profiles is plotted graphically and discussed in detail. It is depicted that the temperature field is upgraded with increase in the heat generation/absorption parameter. Furthermore, a larger Schmidt number causes reduction in the concentration field. The current formulated model may be useful in biomedical engineering, biotechnology, nanotechnology, biosensors, crystal growth, plastic industries, and mineral and cleaning oil manufacturing.

2020 ◽  
Vol 11 ◽  
pp. 976-990
Author(s):  
Santoshi Misra ◽  
Govardhan Kamatam

The study of magnetohydrodynamic flow of a nanoparticle suspension under the influence of varied dimensionless parameters has been the focus of research in contemporary times. This work models the effect of magnetic field, heat generation and absorption parameter in a steady, laminar, two-dimensional boundary layer flow of a nanofluid over a permeable stretching sheet at a given surface temperature and partial slip. The highly nonlinear governing equations are solved numerically using similarity transformations with suitable boundary conditions and converted to ordinary differential equations. A computational model is setup using FORTRAN, where a relevant Adam’s predictor–corrector method is employed to solve the equations. The impact of the dimensionless parameters, including the Brownian motion, thermophoresis, magnetic field, heat generation and absorption parameters, on the velocity, temperature and nanoparticle concentration of fluid flow are analysed systematically.


2019 ◽  
Vol 20 (5) ◽  
pp. 502 ◽  
Author(s):  
Aaqib Majeed ◽  
Ahmed Zeeshan ◽  
Farzan Majeed Noori ◽  
Usman Masud

This article is focused on Maxwell ferromagnetic fluid and heat transport characteristics under the impact of magnetic field generated due to dipole field. The viscous dissipation and heat generation/absorption are also taken into account. Flow here is instigated by linearly stretchable surface, which is assumed to be permeable. Also description of magneto-thermo-mechanical (ferrohydrodynamic) interaction elaborates the fluid motion as compared to hydrodynamic case. Problem is modeled using continuity, momentum and heat transport equation. To implement the numerical procedure, firstly we transform the partial differential equations (PDEs) into ordinary differential equations (ODEs) by applying similarity approach, secondly resulting boundary value problem (BVP) is transformed into an initial value problem (IVP). Then resulting set of non-linear differentials equations is solved computationally with the aid of Runge–Kutta scheme with shooting algorithm using MATLAB. The flow situation is carried out by considering the influence of pertinent parameters namely ferro-hydrodynamic interaction parameter, Maxwell parameter, suction/injection and viscous dissipation on flow velocity field, temperature field, friction factor and heat transfer rate are deliberated via graphs. The present numerical values are associated with those available previously in the open literature for Newtonian fluid case (γ 1 = 0) to check the validity of the solution. It is inferred that interaction of magneto-thermo-mechanical is to slow down the fluid motion. We also witnessed that by considering the Maxwell and ferrohydrodynamic parameter there is decrement in velocity field whereas opposite behavior is noted for temperature field.


2015 ◽  
Vol 93 (5) ◽  
pp. 532-541 ◽  
Author(s):  
M. Modather M. Abdou ◽  
E. Roshdy EL-Zahar ◽  
Ali J. Chamkha

An analysis was carried out to study the effect of thermal radiation on magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid near the stagnation point of a vertical stretching sheet in a porous medium with internal heat generation–absorption. The flow is generated because of linear stretching of the sheet and influenced by the uniform magnetic field that is applied horizontally in the flow region. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically using an accurate implicit finite difference scheme. A comparison of the obtained results with previously published numerical results is done and the results are found to be in good agreement. The effects of the viscoelastic fluid parameter, magnetic field parameter, nonuniform heat source–sink, and the thermal radiation parameter on the heat transfer characteristics are presented graphically and discussed. The values of the skin friction coefficient and the local Nusselt number are tabulated for both cases of assisting and opposing flows.


1970 ◽  
Vol 46 (2) ◽  
pp. 169-176
Author(s):  
MA Samad ◽  
S Ahmed

The present study comprises of steady two dimensional magnetohydrodynamic heat and mass transfer forced convection flow along a vertical stretching sheet in the presence of magnetic field with radiation. The nonlinear partial differential equations governing the flow field occurring in the problem have been transformed to dimensionless nonlinear ordinary differential equations by introducing suitably selected similarity variables. The ensuing equations are simultaneously solved by applying Nachtsheim-Swigert shooting iteration technique with sixth order Runge-Kutta integration scheme. The results in the form of velocity, temperature and concentration profiles are then displayed graphically. The corresponding skin-friction coefficient, Nusselt number and Sherwood number are displayed graphically and also in tabular form as well. Several important parameters such as the prandtl number (Pr), radiation parameter (N), magnetic field parameter (M), heat source parameter (Q), schmidt number (Sc), suction parameter (fw ) and eckert number (Ec) are confronted. The effects of these parameters on the velocity, temperature and concentration profiles are investigated. Key Words: MHD; Forced convection; Stretching sheet; Radiation; Heat generation. DOI: http://dx.doi.org/10.3329/bjsir.v46i2.8183 Bangladesh J. Sci. Ind. Res. 46(2), 169-176, 2011


Sign in / Sign up

Export Citation Format

Share Document