scholarly journals Analytical Solution for Circular Tunnel under Obliquely Incident P Waves considering Different Contact Conditions

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Yawei Duan ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Huifang Li ◽  
Xiuli Du

An analytical solution for the seismic-induced thrust and moment of the circular tunnel in half-space under obliquely incident P waves is developed in this study, which is the superposition of the solution for deep tunnels under incident and reflected P waves and the reflected SV waves. To consider tangential contact stiffness at the ground-tunnel interface, a spring-type stiffness coefficient is introduced into the force-displacement relationship. Moreover, the tunnel lining is treated as the thick-wall cylinder, providing more precise forecasts than beam or shell models used in previous analytical solution, especially for tunnels with thick lining. The reliability of the proposed analytical solution is assessed by comparing with the dynamic numerical results. Based on the proposed analytical solution, parametrical studies are conducted to investigate the effect of some critical factors on the tunnel’s seismic response, including the incident angles, the tangential contact stiffness at the ground-tunnel interface, and the relative stiffness between the ground and the tunnel. The results demonstrate that the proposed analytical solution performs well and can be adopted to predict the internal forces of circular tunnels under obliquely incident P waves in seismic design.

2021 ◽  
Vol 140 ◽  
pp. 106429
Author(s):  
Jingqi Huang ◽  
Weiang Shao ◽  
Mi Zhao ◽  
Junyan Han ◽  
Xu Zhao ◽  
...  

2021 ◽  
Vol 32 (5) ◽  
pp. 1174-1189
Author(s):  
Hongyun Jiao ◽  
Xiuli Du ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Xu Zhao ◽  
...  

2018 ◽  
Vol 55 (2) ◽  
pp. 155-170 ◽  
Author(s):  
Dong-ming Zhang ◽  
Kok-Kwang Phoon ◽  
Qun-fang Hu ◽  
Hong-wei Huang

This paper presents a nonlinear solution of a radial subgrade reaction–displacement (pk–ur) curve for circular tunnel lining design in undrained clay. With the concept of soil shear strength nonlinearly mobilized with shear strain, an analytical solution of pk is obtained using the mobilized strength design method. Two typical deformation modes are considered, namely oval and uniform. A total of 197 orthogonally designed cases are used to calibrate the proposed nonlinear solution of pk using the finite element method with the hardening soil model. The calibration results are summarized using a correction factor, η, which is defined as the ratio of pk_FEM to pk_MSD. It is shown that η is correlated to some input parameters. If this correlation is removed by a regression equation, f, the modified solution f(pk_MSD) agrees very well with pk_FEM. Although in reality the mobilized soil strength varies with principal stress direction, it is found that a simple average of plane strain compression and extension results is sufficient to produce the above agreement. The proposed nonlinear pk–ur curve is applied to an actual tunnel lining design example. The predicted tunnel deformations agree very well with the measured data. In contrast, a linear pk model would produce an underestimation of tunnel convergence and internal forces by 2–4 times due to the overestimation of pk at a large strain level.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 955-967 ◽  
Author(s):  
Hiroshi Amano

An analytical solution to separate P‐waves and S‐waves in vertical seismic profile (VSP) wavefields is derived using combinations of certain terms of the formal solution for forward VSP modeling. Some practical applications of this method to synthetic seismograms and field data are investigated and evaluated. Little wave distortion is recognized, and the weak wavefield masked by dominant wavetrains can be extracted with this method. The decomposed wavefield is expressed in the frequency‐depth (f-z) domain as a linear combination of up to the third‐order differential of traces, which is approximated by trace differences in the practical separation process. In general, five traces with single‐component data are required in this process, but the same process is implemented with only three traces in the acoustic case. Two‐trace extrapolation is applied to each edge of the data gather to enhance the accuracy of trace difference. Since the formulas are developed in the f-z domain, the influence of anelasticity can be taken into account, and the calculation is carried out fast enough with the benefit of the fast Fourier transform (FFT).


2019 ◽  
Vol 16 (6) ◽  
Author(s):  
Xiao-Fei Wang ◽  
Bin-Song Jiang ◽  
Qiang Zhang ◽  
Meng-Meng Lu ◽  
Miao Chen

2011 ◽  
Vol 261-263 ◽  
pp. 1862-1866
Author(s):  
Zheng Fang Dong ◽  
Yi Chao Yao ◽  
Jun Jie Wang

Firstly several seismic simplified methods commonly used for deep circular tunnel are evaluated and the difficulties in response displacement method are pointed out. Then the analytical solution of soil spring coefficient and soil response of deep circular tunnel is derived from using complex variable theory of planar elastic theory based on pseudo-static hypothesis. The analytical solution has been verified by comparing its predictions with results from an analysis in finite element method. It is concluded that the analytical solution can be regarded as one feasible reference for the simplification of response displacement method.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhuangzhi Yang ◽  
Yuqing Wang ◽  
Lin Song ◽  
Xinyu Wang

Understanding the internal force distribution and prejudging the weak part of tunnel supporting structure under complicated construction surroundings have become one of the important measures to ensure the safety of tunnel construction. Based on the initial parameter method and field-monitoring results of surrounding rock pressure, the theory of beam on elastic foundation is employed to derive the analytical solution of primary support internal forces. By combining the monitored data of rock pressure in one tunnel, solution of primary support internal force of a section is back analyzed and weak parts of the primary support are analyzed and evaluated. The results show that, after the tunnel excavation is completed, the internal forces of the primary support of the tunnel arch grow larger over time. When θ > 1.0, the internal forces change greatly. The internal force of the primary support decreased to different extents within 2 days after the primary support was applied and then gradually increased over time. Considering the situationality and changeability of the tunnel construction process, the analytical solution for the primary support internal forces of a multicenter arch tunnel proposed in this paper has a strong feasibility in tunnel construction. The conclusions obtained here could provide theoretical support for the design of supporting structure and the optimization of tunnel construction technology.


Sign in / Sign up

Export Citation Format

Share Document