scholarly journals Using Wireless Sensor Network to Correct Posture in Sports Training Based on Hidden Markov Matching Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Cui Cui

This paper combines the research of wireless sensor networks and sports training and proposes a wireless sensor network-based intelligent sports training system. According to the requirements of the system, this design uses the wireless sensor network system as the platform for development and the ZigBee module for wireless communication. The advantage of this system is to transmit the obtained information to the ZigBee coordinator module, and after the processing of information and the resultant decision, a nonwearable unmonitored motion training model based on visual sensing is proposed. The motion terminal collects video data streams of user motion actions and extracts features to establish HMM motion recognition algorithm to achieve recognition of motion actions, automatic counting, and intelligent scoring functions. The template matching algorithm based on dynamic time regularization and weighted Euclidean distance realizes a universal real-time motion recognition algorithm with high standard and low latency and can guide the user’s motion action based on similarity calculation. The intelligent sports training system is designed and developed to maintain a high-quality human-computer interaction experience with a real-time feedback client and uploads sports data to a cloud server via the HTTP protocol, which supports real-time sports proximity query and training plan development on the website. After practical application tests, the intelligent sports training system based on the wireless sensor network proposed in this paper is stable and reliable and adds fun and competitiveness to boring sports. The research of this paper has some reference value for the application of wireless sensor networks and the research of the motion recognition algorithm.

2013 ◽  
Vol 431 ◽  
pp. 318-324 ◽  
Author(s):  
Chau Chung Song ◽  
Chen Fu Feng ◽  
Chieh Yao Lin ◽  
Bo Hao Yan

In this paper, an application-layer networking system is analyzed and implemented for wireless sensor network. We focus on studying the binding connection methods on the applicationlayer network to implement the universal plug in/out capability on ZigBee networks. The proposed application-layer network provides a cluster-based and plug-and-play communication functions to dynamically and automatically connect in/out the ZigBee nodes on wireless sensor networks. Moreover, the network planning and connection mechanism is achieved by the Binding link objects of ZigBee application-layer functions. By means of Binding connection method, ZigBee nodes in sensor network can obtain the real-time messages and valid information each other. In this study, the various parameters setting and system firmware program are designed to analyze and evaluate the binding methods and data packets of application-layer communication for ZigBee network. Finally, the profile cluster IDs of application-layer network are applied to build up the specific ZigBee sensor systems with Cluster In/Out functions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Beibei Fu

This paper is based on wireless sensor network topology for sports training human data collection, and the collected data are studied and analyzed in depth. According to the application requirements of sports training, a sports training system consisting of an embedded data collection terminal, and a database server is designed using wireless sensor network technology. The hardware is designed with sensor nodes and base stations to collect athletes’ motion parameters in real time. The software is designed with node and base station control software and sports database management system to realize the receiving, storing, and analyzing of sports parameters. And the system experiments were conducted, and the experimental results show that this system meets the application requirements of sports training and provides an effective tool for scientific training decision research. The needs of designing sports training systems under wireless sensor networks are analyzed, and the system is designed and implemented. Our results confirm that the use of wireless sensor network technology in the design of the sports training system improves the system application performance by 16%. And the interactivity of the sports training system in practice has increased by 8%. All of these show that the design of the sports training system under the wireless sensor network meets the actual system application requirements and has a positive impact. The design of base station control, node control, and sports database software is implemented in the software system, which can effectively realize the collection, storage, and analysis of sports parameters. Finally, the designed wireless sensor network-based sports training system is tested, and the test results indicate that the system designed in this paper can meet the needs of sports training use.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhihai Lu ◽  
Zhaoxiang Li ◽  
Lei Zhang

According to the development needs of wireless sensor networks, this paper uses the combination of embedded system and wireless sensor network technology to design a network node platform. This platform is equipped with a sports training sensor module to measure the physiological indicators of the ward in real time. The network node sends the collected physiological parameters to a remote monitoring center in real time. First, according to the generation mechanism of the physiological index signal and the characteristics of the physiological index signal, the wireless sensor network analysis and processing method are used to denoise the physiological index signal, and the wireless sensor network package is used to extract the characteristics of the physiological index, indicating different types of respiration. The energy characteristics of the sound physiological index signals are different, which verifies the feasibility of the independent component analysis method for separating the physiological index and the physiological index signal of the heart sound. Secondly, the hardware system of physiological index signal acquisition is designed, and the selection principle of the hardware unit is introduced. At the same time, the system structure of the monitor is designed, and then, the wireless sensor network sensor node is researched, the hardware of the wearable monitor system is designed, and the hardware architecture and working mode based on the single-chip MSP430F149 are given. Finally, the wireless hardware platform includes the following main modules: sensor part, preprocessing circuit module, microprocessing module based on MSP430 low power consumption, wireless transceiver module based on RF chip CC2420, and power supply unit used to provide energy.


Author(s):  
Jitendra Bahadur Singh ◽  
R. C. Tripathi

The main objective to use wireless sensor network (WSN) is to collect data across various nodes and send the collected data to sink for processing. This is typically the scenario in any real-time application of WSN. In this paper, the authors review various existing methods in data aggregation, list out the research challenges faced by the researchers and propose solutions for each method.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yue Jia

In conventional sports training, coaches record and observe athletes' sports data and judge whether it is reasonable based on their own experience. This qualitative analysis method is highly subjective, has large errors, and is susceptible to interference. To solve the above problems, the design of the sports training system under the wireless sensor network and the research of movement monitoring and recognition become very important. This article aims to study the design of sports training system and the monitoring and recognition of actions under the wireless sensor network technology. This paper simulates the implementation of the proposed data collection protocol and the two basic protocols, the direct transfer algorithm and the flooding algorithm, and compares the protocol proposed in this paper with the other two algorithms in terms of average information transmission success rate and average network overhead. Among them, the average information transmission success rate represents the ratio of the number of messages successfully arriving at the base station to the total amount of information generated by all nodes, and the average network overhead represents the average number of messages sent by each node. Experimental results show that the data collection protocol proposed in this paper can dynamically provide different transmission qualities for information of different importance levels, effectively reducing network overhead, and the reduced overhead is 11% of the original.


2017 ◽  
Vol 13 (3) ◽  
pp. 267-281
Author(s):  
Matheel E. Abdulmunem E. Abdulmunem ◽  
◽  
Fatima B. Ibrahim

2020 ◽  
Author(s):  
Lakshmi Narayana Thalluri ◽  
Jitendra Prasad Ayodhya ◽  
Yuva Raju Chava ◽  
Bhimeswara Anjaneya Prasad Tati

2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


2014 ◽  
Vol 513-517 ◽  
pp. 1915-1918
Author(s):  
Heng Wang ◽  
Bi Geng Zheng

As one of the freshest technologies nowadays, the development of Internet of Things is attracting more and more concerns. Internet of Things is able to connect all the items to Internet via information technology such as RFID and Wireless Sensor Network, in order to realize intelligent identification and management. It is supposed in Internet of Things environments, satisfactory services can be provided through any devices or any networks, whenever it is demanded. It makes that not only PC device but also other small devices with intelligence can be connected to the same network. As a result, It is much more convenient for people to obtain real-time information and then to take corresponding actions.


Sign in / Sign up

Export Citation Format

Share Document