scholarly journals Design and Simulation Analysis of a Robot-Assisted Gait Trainer with the PBWS System

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiancheng (Charles) Ji ◽  
Yufeng Wang ◽  
Guoqing Zhang ◽  
Yuanyuan Lin ◽  
Guoxiang Wang

In response to the ever-increasing demand of lower limb rehabilitation, this paper presents a novel robot-assisted gait trainer (RGT) to assist the elderly and the pediatric patients with neurological impairments in the lower limb rehabilitation training (LLRT). The RGT provides three active degrees of freedom (DoF) to both legs that are used to implement the gait cycle in such a way that the natural gait is not significantly affected. The robot consists of (i) the partial body weight support (PBWS) system to assist patients in sit-to-stand transfer via the precision linear rail system and (ii) the bipedal end-effector (BE) to control the motions of lower limbs via two mechanical arms. The robot stands out for multiple modes of training and optimized functional design to improve the quality of life for those patients. To analyze the performance of the RGT, the kinematic and static models are established in this paper. After that, the reachable workspace and motion trajectory are analyzed to cover the motion requirements and implement natural gait cycle. The preliminary results demonstrate the usability of the robot.

2014 ◽  
Vol 602-605 ◽  
pp. 848-852
Author(s):  
Wen Long Wang ◽  
Ji Rong Wang

This paper describes the design of the gait mechanism of pedal lower limb rehabilitation robot based on people’s heel movement trajectory curve in the normal walking. It is established the kinematics mathematical model of a pedal lower limbs rehabilitation robot and the simplified three-dimensional model with Pro/e software, then it is simulated kinematics using ADAMS software. The simulation result is shown that this pedal lower limbs rehabilitation robot can achieve the expected rehabilitation exercise and run smoothly. Kinematics analysis and simulation of pedal rehabilitation robot is provided the necessary theoretical basis and parameters for the study of lower limb rehabilitation machinery.


2018 ◽  
Vol 232 ◽  
pp. 02032
Author(s):  
Zhiming Wang ◽  
Lizhen Cui ◽  
Zhenglong Cai ◽  
Changfu Pang

With the rapid development of science and technology, robots are widely used in rehabilitation training. According to the physiological structure of human lower limbs and gait characteristics of walking, a lower limb rehabilitation robot is designed in this paper. We design the structure in a form of exoskeleton with three degrees of freedom in which kinematics analysis is carried out by the D-H coordinate transformation method. And then we obtain the relationship between the end effector and the angle of each joint. In addition, the relationship between end effector speed and joint speed is obtained through Jacobian matrix and Lagrange equilibrium method is used for dynamic analysis. The joint torque is calculated through the joint speed and three dimensional modeling of lower limb rehabilitation robot was reconstructed by Pro-e. Finally, the driving mode is selected and calculated.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jian Li ◽  
Diansheng Chen ◽  
Yubo Fan

Lower limb rehabilitation robots are designed to enhance gait function in individuals with motor impairments. Although numerous rehabilitation robots have been developed, only few of these robots have been used in practical health care, particularly in China. The objective of this study is to construct a lower limb rehabilitation robot and bridge the gap between research and application. Open structure to facilitate practical application was created for the whole robot. Three typical movement patterns of a single leg were adopted in designing the exoskeletons, and force models for patient training were established and analyzed under three different conditions, respectively, and then a control system and security strategy were introduced. After establishing the robot, a preliminary experiment on the actual use of a prototype by patients was conducted to validate the functionality of the robot. The experiment showed that different patients and stages displayed different performances, and results on the trend variations across patients and across stages confirmed the validity of the robot and suggested that the design may lead to a system that could be successful in the treatment of patients with walking disorders in China. Furthermore, this study could provide a reference for a similar application design.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440004 ◽  
Author(s):  
SHUAI GUO ◽  
JIANCHENG JI ◽  
GUANGWEI MA ◽  
TAO SONG ◽  
JING WANG

After analyzing the rehabilitation needs of stroke patients and the previous studies on lower limb rehabilitation robot, our lower limb rehabilitation robot is designed for stroke patients' gait and balance training. The robot consists of the mobile chassis, the support column and the pelvis mechanism and it is described in detail. As the pelvis mechanism allows most of the patient's motion degrees of freedom (DOFs), the kinematics model of the mechanism is set up, and kinematics simulation is carried out to study the motion characteristics of the mechanism. After analyzing the calculation and simulation results, the pelvis mechanism is proven to measure up to the movement needs of the paralytic's waist and pelvis in walking rehabilitation process.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 224
Author(s):  
Xusheng Wang ◽  
Yongfei Feng ◽  
Jiazhong Zhang ◽  
Yungui Li ◽  
Jianye Niu ◽  
...  

Carrying out the immediate rehabilitation interventional therapy will better improve the curative effect of rehabilitation therapy, after the condition of bedridden stroke patients becomes stable. A new lower limb rehabilitation training module, as a component of a synchronous rehabilitation robot for bedridden stroke patients’ upper and lower limbs, is proposed. It can electrically adjust the body shape of patients with a different weight and height. Firstly, the innovative mechanism design of the lower limb rehabilitation training module is studied. Then, the mechanism of the lower limb rehabilitation module is simplified and the geometric relationship of the human–machine linkage mechanism is deduced. Next, the trajectory planning and dynamic modeling of the human–machine linkage mechanism are carried out. Based on the analysis of the static moment safety protection of the human–machine linkage model, the motor driving force required in the rehabilitation process is calculated to achieve the purpose of rationalizing the rehabilitation movement of the patient’s lower limb. To reconstruct the patient’s motor functions, an active training control strategy based on the sandy soil model is proposed. Finally, the experimental platform of the proposed robot is constructed, and the preliminary physical experiment proves the feasibility of the lower limb rehabilitation component.


Work ◽  
2021 ◽  
Vol 69 (3) ◽  
pp. 775-793
Author(s):  
Siddharth Bhardwaj ◽  
Abid Ali Khan ◽  
Mohammad Muzammil

BACKGROUND: With the increasing rate of ambulatory disabilities and rise in the elderly population, advance methods to deliver the rehabilitation and assistive services to patients have become important. Lower limb robotic therapeutic and assistive aids have been found to improve the rehabilitation outcome. OBJECTIVE: The article aims to present the updated understanding in the field of lower limb rehabilitation robotics and identify future research avenues. METHODS: Groups of keywords relating to assistive technology, rehabilitation robotics, and lower limb were combined and searched in EMBASE, IEEE Xplore Digital Library, Scopus, Web of Science and Google Scholar database. RESULTS: Based on the literature collected from the databases we provide an overview of the understanding of robotics in rehabilitation and state of the art devices for lower limb rehabilitation. Technological advancements in rehabilitation robotic architecture (sensing, actuation and control) and biomechanical considerations in design have been discussed. Finally, a discussion on the major advances, research directions, and challenges is presented. CONCLUSIONS: Although the use of robotics has shown a promising approach to rehabilitation and reducing the burden on caregivers, extensive and innovative research is still required in both cognitive and physical human-robot interaction to achieve treatment efficacy and efficiency.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xue Zhang ◽  
Zan Yue ◽  
Jing Wang

With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm, and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb rehabilitation robots.


Sign in / Sign up

Export Citation Format

Share Document