Lower limb rehabilitation robotics: The current understanding and technology

Work ◽  
2021 ◽  
Vol 69 (3) ◽  
pp. 775-793
Author(s):  
Siddharth Bhardwaj ◽  
Abid Ali Khan ◽  
Mohammad Muzammil

BACKGROUND: With the increasing rate of ambulatory disabilities and rise in the elderly population, advance methods to deliver the rehabilitation and assistive services to patients have become important. Lower limb robotic therapeutic and assistive aids have been found to improve the rehabilitation outcome. OBJECTIVE: The article aims to present the updated understanding in the field of lower limb rehabilitation robotics and identify future research avenues. METHODS: Groups of keywords relating to assistive technology, rehabilitation robotics, and lower limb were combined and searched in EMBASE, IEEE Xplore Digital Library, Scopus, Web of Science and Google Scholar database. RESULTS: Based on the literature collected from the databases we provide an overview of the understanding of robotics in rehabilitation and state of the art devices for lower limb rehabilitation. Technological advancements in rehabilitation robotic architecture (sensing, actuation and control) and biomechanical considerations in design have been discussed. Finally, a discussion on the major advances, research directions, and challenges is presented. CONCLUSIONS: Although the use of robotics has shown a promising approach to rehabilitation and reducing the burden on caregivers, extensive and innovative research is still required in both cognitive and physical human-robot interaction to achieve treatment efficacy and efficiency.

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xue Zhang ◽  
Zan Yue ◽  
Jing Wang

With the increase in the elderly, stroke has become a common disease, often leading to motor dysfunction and even permanent disability. Lower-limb rehabilitation robots can help patients to carry out reasonable and effective training to improve the motor function of paralyzed extremity. In this paper, the developments of lower-limb rehabilitation robots in the past decades are reviewed. Specifically, we provide a classification, a comparison, and a design overview of the driving modes, training paradigm, and control strategy of the lower-limb rehabilitation robots in the reviewed literature. A brief review on the gait detection technology of lower-limb rehabilitation robots is also presented. Finally, we discuss the future directions of the lower-limb rehabilitation robots.


2020 ◽  
Vol 20 (10) ◽  
pp. 2040037
Author(s):  
YAN-LIN WANG ◽  
KE-YI WANG ◽  
ZI-XING ZHANG ◽  
LIANG-LIANG CHEN ◽  
ZONG-JUN MO

Cable-driven parallel robots (CDPR) have been well used in the rehabilitation field. However, the cables can provide the tension in a single direction, there is a pseudo-drag phenomenon of the cables in the CDPR, which will have a great impact on the safety of patients. Therefore, the novelty of this work is that a bionic muscle cable is used to replace the ordinary cable in the CDPR, which can solve the pseudo-drag phenomenon of the cables in the CDPR and improve the safety performance of the rehabilitation robot. The cable-driven lower limb rehabilitation robot with bionic muscle cables is called as the bionic muscle cable-driven lower limb rehabilitation robot (BMCDLR). The motion planning of the rigid branch chain of the BMCDLR is studied, and the dynamics and system stiffness of the BMCDLR are analyzed based on the man–machine model in this paper. The influence of the parameters of the elastic elements in the bionic muscle cables on the mechanical characteristics of the BMCDLR system was analyzed by using simulation experiments. The research results can provide a reference basis for research on the safety evaluation and control methods of the BMCDLR system.


Author(s):  
Jian Li ◽  
Diansheng Chen ◽  
Chunjing Tao ◽  
Hui Li

Purpose Many studies have shown that rehabilitation robots are crucial for lower limb dysfunction, but application of many robotics have yet to be seen to actual use in China. This study aimed to improve a lower limb rehabilitation robot by details improving and practical design. Design/methodology/approach Structures and control system of a lower limb rehabilitation robot are improved in detail, including joint calculations, comfort analysis and feedback logic creation, and prototype experiments on healthy individuals and patients are conducted in a hospital. Findings All participating subjects did not experience any problems. The experiment shows detail improving is reasonable, and feasibility of the robot was confirmed, which has potential for overcoming difficulties and problems in practical application. Research limitations/implications Therapeutic effects need to be evaluated in the future. Also, more details should be improved continuously based on the actual demand. Originality/value The improved robot could assist the lower limb during standing or walking, which has significance for practical application and patients in China.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiancheng (Charles) Ji ◽  
Yufeng Wang ◽  
Guoqing Zhang ◽  
Yuanyuan Lin ◽  
Guoxiang Wang

In response to the ever-increasing demand of lower limb rehabilitation, this paper presents a novel robot-assisted gait trainer (RGT) to assist the elderly and the pediatric patients with neurological impairments in the lower limb rehabilitation training (LLRT). The RGT provides three active degrees of freedom (DoF) to both legs that are used to implement the gait cycle in such a way that the natural gait is not significantly affected. The robot consists of (i) the partial body weight support (PBWS) system to assist patients in sit-to-stand transfer via the precision linear rail system and (ii) the bipedal end-effector (BE) to control the motions of lower limbs via two mechanical arms. The robot stands out for multiple modes of training and optimized functional design to improve the quality of life for those patients. To analyze the performance of the RGT, the kinematic and static models are established in this paper. After that, the reachable workspace and motion trajectory are analyzed to cover the motion requirements and implement natural gait cycle. The preliminary results demonstrate the usability of the robot.


2021 ◽  
Author(s):  
Wangyang Ge ◽  
Ruoyu Jiang ◽  
Juan Zhao ◽  
Zhentao Liu ◽  
Zhaohui Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document