scholarly journals A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiangtao Ma ◽  
Duanyang Li ◽  
Yonggang Chen ◽  
Yaqiong Qiao ◽  
Haodong Zhu ◽  
...  

The purpose of knowledge graph entity disambiguation is to match the ambiguous entities to the corresponding entities in the knowledge graph. Current entity ambiguity elimination methods usually use the context information of the entity and its attributes to obtain the mention embedding vector, compare it with the candidate entity embedding vector for similarity, and perform entity matching through the similarity. The disadvantage of this type of method is that it ignores the structural characteristics of the knowledge graph where the entity is located, that is, the connection between the entity and the entity, and therefore cannot obtain the global semantic features of the entity. To improve the Precision and Recall of entity disambiguation problems, we propose the EDEGE (Entity Disambiguation based on Entity and Graph Embedding) method, which utilizes the semantic embedding vector of entity relationship and the embedding vector of subgraph structure feature. EDEGE first trains the semantic vector of the entity relationship, then trains the graph structure vector of the subgraph where the entity is located, and balances the weights of these two vectors through the entity similarity function. Finally, the balanced vector is input into the graph neural network, and the matching between the entities is output to achieve entity disambiguation. Extensive experimental results proved the effectiveness of the proposed method. Among them, on the ACE2004 data set, the Precision, Recall, and F1 values of EDEGE are 9.2%, 7%, and 11.2% higher than baseline methods.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.



2021 ◽  
Author(s):  
Shengchen Jiang ◽  
Hongbin Wang ◽  
Xiang Hou

Abstract The existing methods ignore the adverse effect of knowledge graph incompleteness on knowledge graph embedding. In addition, the complexity and large-scale of knowledge information hinder knowledge graph embedding performance of the classic graph convolutional network. In this paper, we analyzed the structural characteristics of knowledge graph and the imbalance of knowledge information. Complex knowledge information requires that the model should have better learnability, rather than linearly weighted qualitative constraints, so the method of end-to-end relation-enhanced learnable graph self-attention network for knowledge graphs embedding is proposed. Firstly, we construct the relation-enhanced adjacency matrix to consider the incompleteness of the knowledge graph. Secondly, the graph self-attention network is employed to obtain the global encoding and relevance ranking of entity node information. Thirdly, we propose the concept of convolutional knowledge subgraph, it is constructed according to the entity relevance ranking. Finally, we improve the training effect of the convKB model by changing the construction of negative samples to obtain a better reliability score in the decoder. The experimental results based on the data sets FB15k-237 and WN18RR show that the proposed method facilitates more comprehensive representation of knowledge information than the existing methods, in terms of Hits@10 and MRR.



Semantic Web ◽  
2022 ◽  
pp. 1-34
Author(s):  
Sebastian Monka ◽  
Lavdim Halilaj ◽  
Achim Rettinger

The information perceived via visual observations of real-world phenomena is unstructured and complex. Computer vision (CV) is the field of research that attempts to make use of that information. Recent approaches of CV utilize deep learning (DL) methods as they perform quite well if training and testing domains follow the same underlying data distribution. However, it has been shown that minor variations in the images that occur when these methods are used in the real world can lead to unpredictable and catastrophic errors. Transfer learning is the area of machine learning that tries to prevent these errors. Especially, approaches that augment image data using auxiliary knowledge encoded in language embeddings or knowledge graphs (KGs) have achieved promising results in recent years. This survey focuses on visual transfer learning approaches using KGs, as we believe that KGs are well suited to store and represent any kind of auxiliary knowledge. KGs can represent auxiliary knowledge either in an underlying graph-structured schema or in a vector-based knowledge graph embedding. Intending to enable the reader to solve visual transfer learning problems with the help of specific KG-DL configurations we start with a description of relevant modeling structures of a KG of various expressions, such as directed labeled graphs, hypergraphs, and hyper-relational graphs. We explain the notion of feature extractor, while specifically referring to visual and semantic features. We provide a broad overview of knowledge graph embedding methods and describe several joint training objectives suitable to combine them with high dimensional visual embeddings. The main section introduces four different categories on how a KG can be combined with a DL pipeline: 1) Knowledge Graph as a Reviewer; 2) Knowledge Graph as a Trainee; 3) Knowledge Graph as a Trainer; and 4) Knowledge Graph as a Peer. To help researchers find meaningful evaluation benchmarks, we provide an overview of generic KGs and a set of image processing datasets and benchmarks that include various types of auxiliary knowledge. Last, we summarize related surveys and give an outlook about challenges and open issues for future research.



Author(s):  
A-Yeong Kim ◽  
◽  
Hee-Guen Yoon ◽  
Seong-Bae Park ◽  
Se-Young Park ◽  
...  


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 998
Author(s):  
Peng Zhang ◽  
Yi Bu ◽  
Peng Jiang ◽  
Xiaowen Shi ◽  
Bing Lun ◽  
...  

This study builds a coronavirus knowledge graph (KG) by merging two information sources. The first source is Analytical Graph (AG), which integrates more than 20 different public datasets related to drug discovery. The second source is CORD-19, a collection of published scientific articles related to COVID-19. We combined both chemo genomic entities in AG with entities extracted from CORD-19 to expand knowledge in the COVID-19 domain. Before populating KG with those entities, we perform entity disambiguation on CORD-19 collections using Wikidata. Our newly built KG contains at least 21,700 genes, 2500 diseases, 94,000 phenotypes, and other biological entities (e.g., compound, species, and cell lines). We define 27 relationship types and use them to label each edge in our KG. This research presents two cases to evaluate the KG’s usability: analyzing a subgraph (ego-centered network) from the angiotensin-converting enzyme (ACE) and revealing paths between biological entities (hydroxychloroquine and IL-6 receptor; chloroquine and STAT1). The ego-centered network captured information related to COVID-19. We also found significant COVID-19-related information in top-ranked paths with a depth of three based on our path evaluation.



Author(s):  
Wei Song ◽  
Jingjin Guo ◽  
Ruiji Fu ◽  
Ting Liu ◽  
Lizhen Liu




2021 ◽  
pp. 107181
Author(s):  
Yao Chen ◽  
Jiangang Liu ◽  
Zhe Zhang ◽  
Shiping Wen ◽  
Wenjun Xiong


Sign in / Sign up

Export Citation Format

Share Document