scholarly journals TCMNER and PubMed: A Novel Chinese Character-Level-Based Model and a Dataset for TCM Named Entity Recognition

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhi Liu ◽  
Changyong Luo ◽  
Zeyu Zheng ◽  
Yan Li ◽  
Dianzheng Fu ◽  
...  

Intelligent traditional Chinese medicine (TCM) has become a popular research field by means of prospering of deep learning technology. Important achievements have been made in such representative tasks as automatic diagnosis of TCM syndromes and diseases and generation of TCM herbal prescriptions. However, one unavoidable issue that still hinders its progress is the lack of labeled samples, i.e., the TCM medical records. As an efficient tool, the named entity recognition (NER) models trained on various TCM resources can effectively alleviate this problem and continuously increase the labeled TCM samples. In this work, on the basis of in-depth analysis, we argue that the performance of the TCM named entity recognition model can be better by using the character-level representation and tagging and propose a novel word-character integrated self-attention module. With the help of TCM doctors and experts, we define 5 classes of TCM named entities and construct a comprehensive NER dataset containing the standard content of the publications and the clinical medical records. The experimental results on this dataset demonstrate the effectiveness of the proposed module.

2014 ◽  
Vol 40 (2) ◽  
pp. 469-510 ◽  
Author(s):  
Khaled Shaalan

As more and more Arabic textual information becomes available through the Web in homes and businesses, via Internet and Intranet services, there is an urgent need for technologies and tools to process the relevant information. Named Entity Recognition (NER) is an Information Extraction task that has become an integral part of many other Natural Language Processing (NLP) tasks, such as Machine Translation and Information Retrieval. Arabic NER has begun to receive attention in recent years. The characteristics and peculiarities of Arabic, a member of the Semitic languages family, make dealing with NER a challenge. The performance of an Arabic NER component affects the overall performance of the NLP system in a positive manner. This article attempts to describe and detail the recent increase in interest and progress made in Arabic NER research. The importance of the NER task is demonstrated, the main characteristics of the Arabic language are highlighted, and the aspects of standardization in annotating named entities are illustrated. Moreover, the different Arabic linguistic resources are presented and the approaches used in Arabic NER field are explained. The features of common tools used in Arabic NER are described, and standard evaluation metrics are illustrated. In addition, a review of the state of the art of Arabic NER research is discussed. Finally, we present our conclusions. Throughout the presentation, illustrative examples are used for clarification.


2021 ◽  
pp. 1-13
Author(s):  
Chaojie Wen ◽  
Tao Chen ◽  
Xudong Jia ◽  
Jiang Zhu

Abstract Medical named entity recognition (NER) is an area in which medical named entities are recognized from medical texts, such as diseases, drugs, surgery reports, anatomical parts, examination documents, and so on. Conventional medical NER methods do not make full use of un-labelled medical texts embedded in medical documents. To address this issue, we propose a medical NER approach based on pre-trained language models and a domain dictionary. First, we construct a medical entity dictionary by extracting medical entities from labelled medical texts and collecting medical entities from other resources, such as the Yidu-N4K dataset. Second, we employ this dictionary to train domain-specific pre-trained language models using un-labelled medical texts. Third, we employ a pseudo labelling mechanism in un-labelled medical texts to automatically annotate texts and create pseudo labels. Fourth, the BiLSTM-CRF sequence tagging model is used to fine-tune the pre-trained language models. Our experiments on the un-labelled medical texts, which are extracted from Chinese electronic medical records, show that the proposed NER approach enables the strict and relaxed F1 scores to be 88.7% and 95.3%, respectively.


Data ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 71
Author(s):  
Gonçalo Carnaz ◽  
Mário Antunes ◽  
Vitor Beires Nogueira

Criminal investigations collect and analyze the facts related to a crime, from which the investigators can deduce evidence to be used in court. It is a multidisciplinary and applied science, which includes interviews, interrogations, evidence collection, preservation of the chain of custody, and other methods and techniques of investigation. These techniques produce both digital and paper documents that have to be carefully analyzed to identify correlations and interactions among suspects, places, license plates, and other entities that are mentioned in the investigation. The computerized processing of these documents is a helping hand to the criminal investigation, as it allows the automatic identification of entities and their relations, being some of which difficult to identify manually. There exists a wide set of dedicated tools, but they have a major limitation: they are unable to process criminal reports in the Portuguese language, as an annotated corpus for that purpose does not exist. This paper presents an annotated corpus, composed of a collection of anonymized crime-related documents, which were extracted from official and open sources. The dataset was produced as the result of an exploratory initiative to collect crime-related data from websites and conditioned-access police reports. The dataset was evaluated and a mean precision of 0.808, recall of 0.722, and F1-score of 0.733 were obtained with the classification of the annotated named-entities present in the crime-related documents. This corpus can be employed to benchmark Machine Learning (ML) and Natural Language Processing (NLP) methods and tools to detect and correlate entities in the documents. Some examples are sentence detection, named-entity recognition, and identification of terms related to the criminal domain.


Author(s):  
Elena Álvarez-Mellado ◽  
María Luisa Díez-Platas ◽  
Pablo Ruiz-Fabo ◽  
Helena Bermúdez ◽  
Salvador Ros ◽  
...  

AbstractMedieval documents are a rich source of historical data. Performing named-entity recognition (NER) on this genre of texts can provide us with valuable historical evidence. However, traditional NER categories and schemes are usually designed with modern documents in mind (i.e. journalistic text) and the general-domain NER annotation schemes fail to capture the nature of medieval entities. In this paper we explore the challenges of performing named-entity annotation on a corpus of Spanish medieval documents: we discuss the mismatches that arise when applying traditional NER categories to a corpus of Spanish medieval documents and we propose a novel humanist-friendly TEI-compliant annotation scheme and guidelines intended to capture the particular nature of medieval entities.


2021 ◽  
pp. 1-13
Author(s):  
Xia Li ◽  
Qinghua Wen ◽  
Zengtao Jiao ◽  
Jiangtao Zhang

Abstract The China Conference on Knowledge Graph and Semantic Computing (CCKS) 2020 Evaluation Task 3 presented clinical named entity recognition and event extraction for the Chinese electronic medical records. Two annotated data sets and some other additional resources for these two subtasks were provided for participators. This evaluation competition attracted 354 teams and 46 of them successfully submitted the valid results. The pre-trained language models are widely applied in this evaluation task. Data argumentation and external resources are also helpful.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kanix Wang ◽  
Robert Stevens ◽  
Halima Alachram ◽  
Yu Li ◽  
Larisa Soldatova ◽  
...  

AbstractMachine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large, well-annotated corpora have been associated with punctuated advances in MR methodology and automated knowledge extraction systems in the same way that ImageNet4 was fundamental for developing machine vision techniques. This study contributes six components to an advanced, named entity analysis tool for biomedicine: (a) a new, Named Entity Recognition Ontology (NERO) developed specifically for describing textual entities in biomedical texts, which accounts for diverse levels of ambiguity, bridging the scientific sublanguages of molecular biology, genetics, biochemistry, and medicine; (b) detailed guidelines for human experts annotating hundreds of named entity classes; (c) pictographs for all named entities, to simplify the burden of annotation for curators; (d) an original, annotated corpus comprising 35,865 sentences, which encapsulate 190,679 named entities and 43,438 events connecting two or more entities; (e) validated, off-the-shelf, named entity recognition (NER) automated extraction, and; (f) embedding models that demonstrate the promise of biomedical associations embedded within this corpus.


Named Entity Recognition is the process wherein named entities which are designators of a sentence are identified. Designators of a sentence are domain specific. The proposed system identifies named entities in Malayalam language belonging to tourism domain which generally includes names of persons, places, organizations, dates etc. The system uses word, part of speech and lexicalized features to find the probability of a word belonging to a named entity category and to do the appropriate classification. Probability is calculated based on supervised machine learning using word and part of speech features present in a tagged training corpus and using certain rules applied based on lexicalized features.


2020 ◽  
Vol 34 (05) ◽  
pp. 8164-8171
Author(s):  
Bing Li ◽  
Shifeng Liu ◽  
Yifang Sun ◽  
Wei Wang ◽  
Xiang Zhao

Recently, there has been an increasing interest in identifying named entities with nested structures. Existing models only make independent typing decisions on the entire entity span while ignoring strong modification relations between sub-entity types. In this paper, we present a novel Recursively Binary Modification model for nested named entity recognition. Our model utilizes the modification relations among sub-entities types to infer the head component on top of a Bayesian framework and uses entity head as a strong evidence to determine the type of the entity span. The process is recursive, allowing lower-level entities to help better model those on the outer-level. To the best of our knowledge, our work is the first effort that uses modification relation in nested NER task. Extensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art models in nested NER tasks, and delivers competitive results with state-of-the-art models in flat NER task, without relying on any extra annotations or NLP tools.


Sign in / Sign up

Export Citation Format

Share Document