scholarly journals Multiview Machine Vision Research of Fruits Boxes Handling Robot Based on the Improved 2D Kernel Principal Component Analysis Network

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xinning Li ◽  
Hu Wu ◽  
Xianhai Yang ◽  
Peng Xue ◽  
Shuai Tan

In order to better realize the orchard intelligent mechanization and reduce the labour intensity of workers, the study of intelligent fruit boxes handling robot is necessary. The first condition to realize intelligence is the fruit boxes recognition, which is the research content of this paper. The method of multiview two-dimensional (2D) recognition was adopted. A multiview dataset for fruits boxes was built. For the sake of the structure of the original image, the model of binary multiview 2D kernel principal component analysis network (BM2DKPCANet) was established to reduce the data redundancy and increase the correlation between the views. The method of multiview recognition for the fruits boxes was proposed combining BM2DKPCANet with the support vector machine (SVM) classifier. The performance was verified by comparing with principal component analysis network (PCANet), 2D principal component analysis network (2DPCANet), kernel principal component analysis network (KPCANet), and binary multiview kernel principal component analysis network (BMKPCANet) in terms of recognition rate and time consumption. The experimental results show that the recognition rate of the method is 11.84% higher than the mean value of PCANet though it needs more time. Compared with the mean value of KPCANet, the recognition rate exceeded 2.485%, and the time saved was 24.5%. The model can meet the requirements of fruits boxes handling robot.

2012 ◽  
Vol 235 ◽  
pp. 74-78 ◽  
Author(s):  
Jia Jun Zhang ◽  
Li Juan Liang

The background noise influences the face image recognition greatly. It is crucial to remove the noise signals prior to the face image recognition processing. For this purpose, the wavelet de-noising technology has combined with the kernel principal component analysis (KPCA) to identify face images in this paper. The wavelet de-noising technology was firstly used to remove the noise signals. Then the KPCA was employed to extract useful principal components for the face image recognition. By doing so, the dimensionality of the feature space can be reduced effectively and hence the performance of the face image recognition can be enhanced. Lastly, a support vector machine (SVM) classifier was used to recognize the face images. Experimental tests have been conducted to validate and evaluate the proposed method for the face image recognition. The analysis results have showed high performance of the newly proposed method for face image identification.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 701 ◽  
Author(s):  
Beige Ye ◽  
Taorong Qiu ◽  
Xiaoming Bai ◽  
Ping Liu

In view of the nonlinear characteristics of electroencephalography (EEG) signals collected in the driving fatigue state recognition research and the issue that the recognition accuracy of the driving fatigue state recognition method based on EEG is still unsatisfactory, this paper proposes a driving fatigue recognition method based on sample entropy (SE) and kernel principal component analysis (KPCA), which combines the advantage of the high recognition accuracy of sample entropy and the advantages of KPCA in dimensionality reduction for nonlinear principal components and the strong non-linear processing capability. By using support vector machine (SVM) classifier, the proposed method (called SE_KPCA) is tested on the EEG data, and compared with those based on fuzzy entropy (FE), combination entropy (CE), three kinds of entropies including SE, FE and CE that merged with KPCA. Experiment results show that the method is effective.


2021 ◽  
pp. 6787-6794
Author(s):  
Anisha Rebinth, Dr. S. Mohan Kumar

An automated Computer Aided Diagnosis (CAD) system for glaucoma diagnosis using fundus images is developed. The various glaucoma image classification schemes using the supervised and unsupervised learning approaches are reviewed. The research paper involves three stages of glaucoma disease diagnosis. First, the pre-processing stage the texture features of the fundus image is recorded with a two-dimensional Gabor filter at various sizes and orientations. The image features are generated using higher order statistical characteristics, and then Principal Component Analysis (PCA) is used to select and reduce the dimension of the image features. For the performance study, the Gabor filter based features are extracted from the RIM-ONE and HRF database images, and then Support Vector Machine (SVM) classifier is used for classification. Final stage utilizes the SVM classifier with the Radial Basis Function (RBF) kernel learning technique for the efficient classification of glaucoma disease with accuracy 90%.


Sign in / Sign up

Export Citation Format

Share Document