scholarly journals Genotype X Environment Interaction and Yield Stability in Early-Maturing Cowpea (Vigna unguiculata (L.) Walp.) Landraces in Ethiopia

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yirga Kindie ◽  
Bulti Tesso ◽  
Berhanu Amsalu

The study was conducted to estimate the effects of genotype, environment, and genotype × environment interaction on grain yield and yield-related traits and to identify stability genotype. At six environments, twenty-four cowpea landraces and one check were evaluated in a 5 × 5 triple lattice during the 2019 cropping season. Data were collected on yield and yield-related traits. The analysis of variance for each environment and across environments showed significant differences among genotypes, environments, and GEI for most traits including yield. Environment, genotype, and GEI showed 27.45%, 20.9%, and 49.55% contribution to the total sum of squares, respectively, for grain yield. This indicated that the environments were diverse and most of the variation in grain yield was caused due to interaction and environmental means. G24 (2632 kg ha−1) and G16 (2290 kg ha−1) were the highest yielder and stable genotypes with mean grain yields above the grand mean (2049.28 kg ha−1) and standard check (2273 kg ha−1). G24 and G16 were the most stable genotypes according to cultivar superiority, Wricke’s ecovalence, regression coefficient, and devotion from regression stability models.

2020 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Jiban Shrestha ◽  
Ujjawal Kumar Singh Kushwaha ◽  
Bidhya Maharjan ◽  
Sushil Raj Subedi ◽  
Manoj Kandel ◽  
...  

2017 ◽  
Vol 3 (1) ◽  
pp. 38-43
Author(s):  
Md Saleh Uddin ◽  
Md Sultan Alam ◽  
Nasrin Jahan ◽  
Kazi Md Wayaz Hossain ◽  
Md Ali Newaz

Genotypes x environment interaction as well as stability of performance were determined for grain yield and yield contributes of 12 wheat genotypes under four salinity levels of environments (control, 8, 12, 16 dS/m). Significant genotype-environment interaction (linear) for days to heading, plant height, number of spikes per plant and grains per spikes, 1000-grain weight and grain yield per plant at 1% level of probability when tested against pooled deviation. Both the environment (linear) and genotype x environment (linear) components of variation for stability were also significant indicating that prediction of the genotypes on the environment appeared feasible for all the characters. The variance due to pooled deviation was significant for only days to heading. Considering all the three stability parameter, genotype G11 was found most stable among all the genotypes for grain weight of wheat. Among the genotypes G11, G22, G24, G33 and G40 were most desirable for yield per plant. The genotype G32 showed more responsiveness to changing environment and was suited only for highly favorable environments. Based on three stability parameters, G11, G22 and G37 were the most stable and desirable genotypes with reasonable good yield among the all.Asian J. Med. Biol. Res. March 2017, 3(1): 38-43


2020 ◽  
Author(s):  
Fantaye Belay ◽  
Hintsa Meresa ◽  
Shambel Syum

Abstract Shortage of widely adapted and high yielding variety is one of the major bottlenecks for production and productivity of sorghum in dry lowlands of Tigray region, northern Ethiopia. A field experiment was conducted during the main seasons of 2017and 2019 at four locations using randomized complete block design with three replications to evaluate the performance of ten early maturing sorghum genotypes for grain yield using AMMI (Additive Main Effects and Multiplicative Interaction) model. The combined analysis of variance revealed highly significant (P≤0.01) genotype (G), environment (E) and genotype × environment interaction (GEI). The significant genotype by environment interaction effects were further partitioned in to two significant interaction principal components by using AMMI model. The AMMI analysis of variance showed that the genotype, environment and interaction sum squares contributed 41.55 %, 28.67 % and 29.78 % to the treatment sum squares for grain yield respectively. In addition the first two IPCAs and interaction residual were significant. The first two IPCAs accounted for a total of 82.20 % of the interaction sum square. The results revealed that the observed yield variation among genotypes were due to genetic potential of genotypes and interaction rather than location differences. The highest yield was obtained from ESH-1 (3276 kg ha-1), while the lowest was from Grana-1 (2094 kg ha-1) and the average grain yield of genotypes was 2462 kg ha-1. Therefore, ESH-1 is selected as the best stable hybrid with consistent yielding performance across the testing environments in dry lowland areas of Abergelle and similar agro-ecologies in Tigray region, northern Ethiopia.


2019 ◽  
Vol 48 (4) ◽  
pp. 1143-1151
Author(s):  
Vijay Sharma ◽  
RB Dubey ◽  
Rumana Khan

To assess the stability of genotypes for grain yield and physio-biochemical traits associated with terminal heat tolerance pooled analysis of 8 genotypes of wheat of diverse origin, their 28 F1 progeny and 2 checks were carried out in 4 different environments i.e. early sown (E1), normal sown (E2), late sown (E3) and very late sown (E4) conditions. The pooled analysis of variance due to environment (for proline and chlorophyll content), genotypes and genotype × environment interaction was significant for all the traits under consideration. This indicated the distinct and differential effect of the different sowing conditions (environment) and differential response of all the genotypes chosen for the study. The five stable wheat hybrids viz., HI 1544 × HD 2987, Raj 4037 × HD 2987, PBW 175 × HD 2987, HD 2932 × Raj 4079 and PBW 175 × Lok 1 showed higher mean values, favourable regression coefficient and deviation from regression coefficient for grain yield and other associated characters, thus emerged as stable genotypes as per criteria of stability analysis. Similarly, some genotypes showed specific adaptations for poor or heat stress environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ghislain Kanfany ◽  
Mathieu Anatole Tele Ayenan ◽  
Yedomon Ange Bovys Zoclanclounon ◽  
Talla Kane ◽  
Malick Ndiaye ◽  
...  

Identification of highly performing varieties under Senegalese environment is crucial to sustain rice production. Genotype-environment interaction and stability performance on the grain yield of ten upland rice genotypes were investigated across 11 environments in Senegal during the rainy seasons of 2016 and 2017 to identify adapted varieties. The experiment was conducted using a randomized complete block design with three replications at each environment. Data on grain yield were recorded and analyzed using the additive main effects and multiplicative interaction (AMMI) model. The combined analysis of variance revealed that the grain yield was significantly affected by environment (67.9%), followed by genotype × environment (G × E) interaction (23.6%) and genotype (8.5%). The first two principal component axes were highly significant with 37.5 and 26% of the total observed G × E interaction variation, respectively. GGE biplot grouped the environments into four potential megaenvironments. Based on the yield stability index parameter and ranking GGE biplot, NERICA 8 and ART3-7-L9P8-1-B-B-1 were stable and high-yielding varieties compared to the local check NERICA 6. These varieties should be proposed for cultivation in order to sustain the rice production in the southern part of the groundnut basin of Senegal and used as parental lines in rice breeding program for grain yield improvement.


2018 ◽  
Vol 6 (3) ◽  
pp. 117-127
Author(s):  
Adane C. Chobe ◽  
Abebe D. Ararsa

Twelve linseed genotypes were evaluated in 13 environments during the main cropping season in central highlands of Ethiopia. The objective of the study was to determine the magnitude and pattern of G × E interaction and yield stability in linseed genotypes. The study was conducted using randomized complete block design with 3 replications. Genotype × environment interaction and yield stability were estimated using the additive main effects and multiplicative interaction and site regression genotype plus genotype × environment interaction biplot. Pooled analysis of variance for seed yield showed significant (p ≤ 0.001) differences among the genotypes, environments and G × E interaction effects. This indicated that the genotypes differentially responded to the changes in the test environments or the test environments differentially discriminated the genotypes or both. Environment effect was responsible for the greatest part of the variation, followed by G × E interaction and genotype effects, indicating spatial and temporal replications of linseed yield trials. The first three multiplicative component terms of AMMI were found to be significant. The first two multiplicative component terms sum of squares, with their cumulative degrees of freedom of 44, explained 62.9% of the interaction sum of squares. No single variety showed superior performance in all environments but CI-1525 demonstrated top ranking at six of the thirteen environments. The application of AMMI and GGE biplots facilitated the visual comparison and identification of superior genotypes, thereby supporting decisions on variety selection and recommendation in different environments


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2136
Author(s):  
Mohammad Rafiqul Islam ◽  
Bikas Chandra Sarker ◽  
Mohammad Ashraful Alam ◽  
Talha Javed ◽  
Mohammad Jahangir Alam ◽  
...  

Water deficit stress is a critical abiotic constraint to mung bean production that affects plant growth and development and finally reduces crop yield. Therefore, a field experiment was conducted at five diverse environments using four water stress-tolerant genotypes, namely BARI Mung-8, BMX-08010-2, BMX-010015, and BMX-08009-7, along with two popular cultivated varieties (check) of BARI Mung-6 and BARI Mung-7 to evaluate more stable tolerant genotypes across the country. Stability analysis was performed based on the grain yield. The combined analysis of variance showed significant variations among genotypes, environments, and their interactions. The AMMI analysis of variance indicated that genotype accounted for 91% of the total sum of squares for grain yield, followed by genotype × environment interaction (5%), and environment (4%). Partitioning of interaction indicated that the first three interaction principal components (IPCA1–IPCA3) were highly significant (p ≤ 0.01). Using these significant IPCAs, AMMI stability parameters and non-parameter indices BMX-010015 was found stable across the environment based on yield traits and grain yield. The BMX-08010-2 genotype also showed significant regression coefficient (bi) more than unity, and non-significant deviation from regression (S2di) values, indicating suitable for a favorable environment considering grain yield. So, based on the stability analysis (Eberhart and Russell), additive main effects, and multiplicative interactions (AMMI) analysis, the BMX-010015 and BMX-08010-2 could be suitable for having tolerance to water deficit stress.


2018 ◽  
Vol 10 (12) ◽  
pp. 42
Author(s):  
Diana-Abasi Udoh ◽  
Søren K. Rasmussen ◽  
Sven-Erik Jacobsen ◽  
Godfrey A. Iwo ◽  
Walter de Milliano

Forty-three sweet sorghum accessions were grown in two contrasting environments; Nigeria (tropical environment) and Denmark (temperate environment). The objectives were to determine the interaction between genotype and environment on grain yield, fresh biomass and stem sugar, and to assess yield stability of sweet sorghum and identify the best genotypes for biofuel production. The sweet sorghum originating from a Dutch and ICRISAT collection was grown in randomized complete block design in three replicates for two years (2014 and 2015). The combined analysis of variance of the sweet sorghum genotypes in two years over the two contrasting environments revealed that year (Y), genotype (G), environment (E) and genotype by environment interaction (GEI) were significant in the entire biofuel yield attributes obtained from both Dutch and ICRISAT collections except the degree of Brix and fresh biomass respectively across the year. The year and genotype interaction (Y×G) was not significant in all the biofuel attributes of Dutch accessions. Additive main effect and multiplicative interaction (AMMI) analysis of variance showed significant effect of G, E and the GEI. The AMMI was used to identify the best performing, adaptable and more stable genotypes. Twenty-two genotypes of both ICRISAT and Dutch accessions were identified to be stable across the two locations with respect to different biofuel attributes. Nine, seven, and six genotypes were found to be stable for grain yield, biomass yield and brix value, respectively. The best performing genotypes for stem sugar across locations were identified. From the available data collected, the performance of the sweet sorghum was attributed to both genetic and environmental effects. High GE was observed to influence stability, hence will influence the selection criteria of the sweet sorghum genotypes.


Genetika ◽  
2018 ◽  
Vol 50 (3) ◽  
pp. 1067-1080 ◽  
Author(s):  
Dragana Brankovic-Radojcic ◽  
Vojka Babic ◽  
Zdenka Girek ◽  
Tomislav Zivanovic ◽  
Aleksandar Radojĉic ◽  
...  

Significant genotype x environment interaction for quantitative traits, such is grain yield, reduces the usefulness of genotype means, over all environments, for selecting superior genotypes. AMMI model is a valuable statistical tool in identifying systemic variation contained in the interaction effect. Obtained data could be applied in maximizing yield potential in every environment based on both narrow and wide genotype adaptability, without the necessity of developing breeding programs for smaller targeted environments. Precise assortment of superior genotypes, with the assistance of AMMI model, leads to the better recommendation of newly bred hybrids, and thus increasing maize grain yield in a targeted environment. In this research genotype x environment interaction and yield stability of 36 maize hybrids of FAO 300-700 maturity group was investigating. The trial was set according to Randomized Complete Block Design (RCBD). Data were processed in order to obtain average estimates of grain yield, and yield stability was assessed by the method of AMMI analysis. The highest average grain yield was achieved in 2011 (11.62 t/ha), and the lowest in the most stressful and dry 2012 (6.90 t/ha). In the region Loznica L2 the highest average yield was noticed (13.81 t/ha), while at L7 (Sremska Mitrovica) average grain yield was the lowest (6.97 t/ha). Results of AMMI analysis gave precise recommendation for production of maize hybrids in certain environments, by determining winning areas of hybrids H20, H11 and H36. Medium early maturing and high yielding hybrids (H11 and H20) are therefore considered more favorable for production in environments with lower precipitation, while high yielding and more stable hybrids H21 and H35 are suitable for a wider range of environments. Hybrid H36 (FAO 700) showed its full potential at L2, and L3 which did not suffer from a lack of moisture. This hybrid also expressed its best potential in environments with favorable conditions.


Sign in / Sign up

Export Citation Format

Share Document