scholarly journals Blade Serial Number Identification Based on Blade Tip Clearance without OPR Sensor

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Zhang ◽  
Qidi Wang ◽  
Huiqun Yuan ◽  
Xin Li

Blade serial number identification is one of the key issues in blade tip-timing vibration measurement without once-per-revolution (OPR) sensor. In order to overcome the shortcomings of the existing blade serial number identification methods without OPR sensor, a new identification method of blade serial number based on blade tip clearance is proposed in this paper. The relationship between blade tip-timing data and blade serial number can be identified by the matching relationship between blade tip clearance under static state and dynamic state. According to the finite element simulation and experimental data, the accuracy of the blade serial number identification method based on blade tip clearance is verified by using the OPR sensor method. The results show that in the nonresonant rotation speed region, the method can identify the blade serial number, and the identification result is consistent with the result of the OPR sensor method. In the resonance rotation speed region, when the blade tip clearance change caused by the blade circumferential bending vibration is less than the dispersion of initial blade tip clearance, the method in this paper can accurately identify the blade serial number. Otherwise, the inference method can be used. It provides theoretical support and technical basis for the engineering application of blade tip-timing vibration measurement technology without OPR sensor.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3552 ◽  
Author(s):  
Chun-Yi Zhang ◽  
Jing-Shan Wei ◽  
Ze Wang ◽  
Zhe-Shan Yuan ◽  
Cheng-Wei Fei ◽  
...  

To reveal the effect of high-temperature creep on the blade-tip radial running clearance of aeroengine high-pressure turbines, a distributed collaborative generalized regression extremum neural network is proposed by absorbing the heuristic thoughts of distributed collaborative response surface method and the generalized extremum neural network, in order to improve the reliability analysis of blade-tip clearance with creep behavior in terms of modeling precision and simulation efficiency. In this method, the generalized extremum neural network was used to handle the transients by simplifying the response process as one extremum and to address the strong nonlinearity by means of its nonlinear mapping ability. The distributed collaborative response surface method was applied to handle multi-object multi-discipline analysis, by decomposing one “big” model with hyperparameters and high nonlinearity into a series of “small” sub-models with few parameters and low nonlinearity. Based on the developed method, the blade-tip clearance reliability analysis of an aeroengine high-pressure turbine was performed subject to the creep behaviors of structural materials, by considering the randomness of influencing parameters such as gas temperature, rotational speed, material parameters, convective heat transfer coefficient, and so forth. It was found that the reliability degree of the clearance is 0.9909 when the allowable value is 2.2 mm, and the creep deformation of the clearance presents a normal distribution with a mean of 1.9829 mm and a standard deviation of 0.07539 mm. Based on a comparison of the methods, it is demonstrated that the proposed method requires a computing time of 1.201 s and has a computational accuracy of 99.929% over 104 simulations, which are improvements of 70.5% and 1.23%, respectively, relative to the distributed collaborative response surface method. Meanwhile, the high efficiency and high precision of the presented approach become more obvious with the increasing simulations. The efforts of this study provide a promising approach to improve the dynamic reliability analysis of complex structures.


Author(s):  
Eric B. Holmquist ◽  
Peter L. Jalbert

New and future gas turbine engines are being required to provide greater thrust with improved efficiency, while simultaneously reducing life cycle operating costs. Improved component capabilities enable active control methods to provide better control of engine operation with reduced margin. One area of interest is a means to assess the relative position of rotating machinery in real-time, in particular hot section turbo machinery. To this end, Hamilton Sundstrand is working to develop a real-time means to monitor blade position relative to the engine static structure. This approach may yield other engine operating characteristics useful in assessing component health, specifically measuring blade tip clearance, time-of-arrival, and other parameters. UTC is leveraging its many years of experience with engine control systems to develop a microwave-based sensing device, applicable to both military and commercial engines. The presentation will discuss a hot section engine demonstration of a blade position monitoring system and the control system implications posed by a microwave-based solution. Considerations necessary to implement such a system and the challenges associated with integrating a microwave-based sensor system into an engine control system are discussed.


Author(s):  
Patrick H. Wagner ◽  
Jan Van herle ◽  
Lili Gu ◽  
Jürg Schiffmann

Abstract The blade tip clearance loss was studied experimentally and numerically for a micro radial fan with a tip diameter of 19.2mm. Its relative blade tip clearance, i.e., the clearance divided by the blade height of 1.82 mm, was adjusted with different shims. The fan characteristics were experimentally determined for an operation at the nominal rotational speed of 168 krpm with hot air (200 °C). The total-to-total pressure rise and efficiency increased from 49 mbar to 68 mbar and from 53% to 64%, respectively, by reducing the relative tip clearance from 7.7% to the design value of 2.2%. Single and full passage computational fluid dynamics simulations correlate well with these experimental findings. The widely-used Pfleiderer loss correlation with an empirical coefficient of 2.8 fits the numerical simulation and the experiments within +2 efficiency points. The high sensitivity to the tip clearance loss is a result of the design specific speed of 0.80, the highly-backward curved blades (17°), and possibly the low Reynolds number (1 × 105). The authors suggest three main measures to mitigate the blade tip clearance losses for small-scale fans: (1) utilization of high-precision surfaced-grooved gas-bearings to lower the blade tip clearance, (2) a mid-loaded blade design, and (3) an unloaded fan leading edge to reduce the blade tip clearance vortex in the fan passage.


Author(s):  
A. G. Sheard ◽  
B. Killeen

It is difficult to make a reliable measurement of running clearance in the hostile environment over the blading of a modern gas turbine. When engine manufacturers require the measurement to be made over every blade during live engine tests, system reliability, ruggedness and ease of operation are of primary importance. This paper describes a tip clearance measurement system that can measure clearance over every blade around a rotor. The measurement system concept is presented, and the system design described in detail. Commissioning of the measurement system on a compressor test facility, and the results obtained are discussed. An analysis of system performance during the commissioning trials concludes the paper.


1982 ◽  
Author(s):  
J. Van Den Andel

In horizontally split gas turbines, distortions of the cylinders may be expected, especially during start-up conditions. This article describes how the distortions of an inner cylinder were first measured outside the turbine by placing it on a horizontal boring mill while heating the inner diameter. Modifications were made to reduce the distortion and the difference is shown. The cylinder was then tested in the actual turbine (CW352) where the diameter was compared with the presumably perfect circle described by the passing blades. Three monitors were used to determine the gap between the blades and the seal plates which are a part of the inner cylinder. Described is how a high accuracy is obtained using complex touch probe actuators and an electronic control unit which computes the blade-to-seal-plate gap and displays it for read out. A computer interface allows the information to be stored in the master computer for recall.


Sign in / Sign up

Export Citation Format

Share Document