scholarly journals Semisupervised Classification with High-Order Graph Learning Attention Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wu-Lue Yang ◽  
Xiao-Ze Chen ◽  
Xu-Hua Yang

At present, the graph neural network has achieved good results in the semisupervised classification of graph structure data. However, the classification effect is greatly limited in those data without graph structure, incomplete graph structure, or noise. It has no high prediction accuracy and cannot solve the problem of the missing graph structure. Therefore, in this paper, we propose a high-order graph learning attention neural network (HGLAT) for semisupervised classification. First, a graph learning module based on the improved variational graph autoencoder is proposed, which can learn and optimize graph structures for data sets without topological graph structure and data sets with missing topological structure and perform regular constraints on the generated graph structure to make the optimized graph structure more reasonable. Then, in view of the shortcomings of graph attention neural network (GAT) that cannot make full use of the graph high-order topology structure for node classification and graph structure learning, we propose a graph classification module that extends the attention mechanism to high-order neighbors, in which attention decays according to the increase of neighbor order. HGLAT performs joint optimization on the two modules of graph learning and graph classification and performs semisupervised node classification while optimizing the graph structure, which improves the classification performance. On 5 real data sets, by comparing 8 classification methods, the experiment shows that HGLAT has achieved good classification results on both a data set with graph structure and a data set without graph structure.

Author(s):  
Jungeui Hong ◽  
Elizabeth A. Cudney ◽  
Genichi Taguchi ◽  
Rajesh Jugulum ◽  
Kioumars Paryani ◽  
...  

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a neural network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The study uses the Wisconsin Breast Cancer study with nine attributes and one class.


2012 ◽  
Vol 263-266 ◽  
pp. 2173-2178
Author(s):  
Xin Guang Li ◽  
Min Feng Yao ◽  
Li Rui Jian ◽  
Zhen Jiang Li

A probabilistic neural network (PNN) speech recognition model based on the partition clustering algorithm is proposed in this paper. The most important advantage of PNN is that training is easy and instantaneous. Therefore, PNN is capable of dealing with real time speech recognition. Besides, in order to increase the performance of PNN, the selection of data set is one of the most important issues. In this paper, using the partition clustering algorithm to select data is proposed. The proposed model is tested on two data sets from the field of spoken Arabic numbers, with promising results. The performance of the proposed model is compared to single back propagation neural network and integrated back propagation neural network. The final comparison result shows that the proposed model performs better than the other two neural networks, and has an accuracy rate of 92.41%.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4408 ◽  
Author(s):  
Hyun-Myung Cho ◽  
Heesu Park ◽  
Suh-Yeon Dong ◽  
Inchan Youn

The goals of this study are the suggestion of a better classification method for detecting stressed states based on raw electrocardiogram (ECG) data and a method for training a deep neural network (DNN) with a smaller data set. We suggest an end-to-end architecture to detect stress using raw ECGs. The architecture consists of successive stages that contain convolutional layers. In this study, two kinds of data sets are used to train and validate the model: A driving data set and a mental arithmetic data set, which smaller than the driving data set. We apply a transfer learning method to train a model with a small data set. The proposed model shows better performance, based on receiver operating curves, than conventional methods. Compared with other DNN methods using raw ECGs, the proposed model improves the accuracy from 87.39% to 90.19%. The transfer learning method improves accuracy by 12.01% and 10.06% when 10 s and 60 s of ECG signals, respectively, are used in the model. In conclusion, our model outperforms previous models using raw ECGs from a small data set and, so, we believe that our model can significantly contribute to mobile healthcare for stress management in daily life.


2019 ◽  
Vol 52 (4) ◽  
pp. 854-863 ◽  
Author(s):  
Brendan Sullivan ◽  
Rick Archibald ◽  
Jahaun Azadmanesh ◽  
Venu Gopal Vandavasi ◽  
Patricia S. Langan ◽  
...  

Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulsed-source experiments. To advance existing software, this article demonstrates the use of machine learning to refine peak locations, predict peak shapes and yield more accurate integrated intensities when applied to whole data sets from a protein crystal. The artificial neural network, based on the U-Net architecture commonly used for image segmentation, is trained using about 100 000 simulated training peaks derived from strong peaks. After 100 training epochs (a round of training over the whole data set broken into smaller batches), training converges and achieves a Dice coefficient of around 65%, in contrast to just 15% for negative control data sets. Integrating whole peak sets using the neural network yields improved intensity statistics compared with other integration methods, including k-nearest neighbours. These results demonstrate, for the first time, that neural networks can learn peak shapes and be used to integrate Bragg peaks. It is expected that integration using neural networks can be further developed to increase the quality of neutron, electron and X-ray crystallography data.


2014 ◽  
pp. 68-75
Author(s):  
Oles Hodych ◽  
Yuriy Shcherbyna ◽  
Michael Zylan

In this article the authors propose an approach to forecasting the direction of the share price fluctuation, which is based on utilization of the Feedforward Neural Network in conjunction with Self-Organizing Map. It is proposed to use the Self-Organizing Map for filtration of the share price data set, whereas the Feedforward Neural Network is used to forecast the direction of the share price fluctuation based on the filtered data set. The comparison results are presented for filtered and non-filtered share price data sets.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012060
Author(s):  
Ping He ◽  
Yong Li ◽  
Shoulong Chen ◽  
Hoghua Xu ◽  
Lei Zhu ◽  
...  

Abstract In order to realize transformer voiceprint recognition, a transformer voiceprint recognition model based on Mel spectrum convolution neural network is proposed. Firstly, the transformer core looseness fault is simulated by setting different preloads, and the sound signals under different preloads are collected; Secondly, the sound signal is converted into a spectrogram that can be trained by convolutional neural network, and then the dimension is reduced by Mel filter bank to draw Mel spectrogram, which can generate spectrogram data sets under different preloads in batch; Finally, the data set is introduced into convolutional neural network for training, and the transformer voiceprint fault recognition model is obtained. The results show that the training accuracy of the proposed Mel spectrum convolution neural network transformer identification model is 99.91%, which can well identify the core loosening faults.


2019 ◽  
Vol 5 (10) ◽  
pp. 2120-2130 ◽  
Author(s):  
Suraj Kumar ◽  
Thendiyath Roshni ◽  
Dar Himayoun

Reliable method of rainfall-runoff modeling is a prerequisite for proper management and mitigation of extreme events such as floods. The objective of this paper is to contrasts the hydrological execution of Emotional Neural Network (ENN) and Artificial Neural Network (ANN) for modelling rainfall-runoff in the Sone Command, Bihar as this area experiences flood due to heavy rainfall. ENN is a modified version of ANN as it includes neural parameters which enhance the network learning process. Selection of inputs is a crucial task for rainfall-runoff model. This paper utilizes cross correlation analysis for the selection of potential predictors. Three sets of input data: Set 1, Set 2 and Set 3 have been prepared using weather and discharge data of 2 raingauge stations and 1 discharge station located in the command for the period 1986-2014.  Principal Component Analysis (PCA) has then been performed on the selected data sets for selection of data sets showing principal tendencies.  The data sets obtained after PCA have then been used in the model development of ENN and ANN models. Performance indices were performed for the developed model for three data sets. The results obtained from Set 2 showed that ENN with R= 0.933, R2 = 0.870, Nash Sutcliffe = 0.8689, RMSE = 276.1359 and Relative Peak Error = 0.00879 outperforms ANN in simulating the discharge. Therefore, ENN model is suggested as a better model for rainfall-runoff discharge in the Sone command, Bihar.


Author(s):  
Yasser Khan

Telecommunication customer churn is considered as major cause for dropped revenue and customer baseline of voice, multimedia and broadband service provider. There is strong need on focusing to understand the contributory factors of churn. Now considering factors from data sets obtained from Pakistan major telecom operators are applied for modeling. On the basis of results obtained from the optimal techniques, comparative technical evaluation is carried out. This research study is comprised mainly of proposition of conceptual frame work for telecom customer churn that lead to creation of predictive model. This is trained tested and evaluated on given data set taken from Pakistan Telecom industry that has provided accurate & reliable outcomes. Out of four prevailing statistical and machine learning algorithm, artificial neural network is declared the most reliable model, followed by decision tree. The logistic regression is placed at last position by considering the performance metrics like accuracy, recall, precision and ROC curve. The results from research has revealed main parameters found responsible for customer churn were data rate, call failure rate, mean time to repair and monthly billing amount. On the basis of these parameter artificial neural network has achieved 79% more efficiency as compare to low performing statistical techniques.


Author(s):  
M. van der Schaar ◽  
E. Delory ◽  
A. Català ◽  
M. André

Recordings of a group of foraging sperm whales usually result in a mixture of clicks from different animals. To analyse the click sequences of individual whales these clicks need to be separated, and for this an automatic classifier would be preferred. Here we study the use of a radial basis function network to perform the separation. The neural network's ability to discriminate between different whales was tested with six data sets of individually diving males. The data consisted of five shorter click trains and one complete dive which was especially important to evaluate the capacity of the network to generalize. The network was trained with characteristics extracted from the six click series with the help of a wavelet packet-based local discriminant basis. The selected features were separated in a training set containing 50 clicks of each data set and a validation set with the remaining clicks. After the network was trained it could correctly classify around 90% of the short click series, while for the entire dive this percentage was around 78%.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Artur Yakimovich ◽  
Moona Huttunen ◽  
Jerzy Samolej ◽  
Barbara Clough ◽  
Nagisa Yoshida ◽  
...  

ABSTRACT The use of deep neural networks (DNNs) for analysis of complex biomedical images shows great promise but is hampered by a lack of large verified data sets for rapid network evolution. Here, we present a novel strategy, termed “mimicry embedding,” for rapid application of neural network architecture-based analysis of pathogen imaging data sets. Embedding of a novel host-pathogen data set, such that it mimics a verified data set, enables efficient deep learning using high expressive capacity architectures and seamless architecture switching. We applied this strategy across various microbiological phenotypes, from superresolved viruses to in vitro and in vivo parasitic infections. We demonstrate that mimicry embedding enables efficient and accurate analysis of two- and three-dimensional microscopy data sets. The results suggest that transfer learning from pretrained network data may be a powerful general strategy for analysis of heterogeneous pathogen fluorescence imaging data sets. IMPORTANCE In biology, the use of deep neural networks (DNNs) for analysis of pathogen infection is hampered by a lack of large verified data sets needed for rapid network evolution. Artificial neural networks detect handwritten digits with high precision thanks to large data sets, such as MNIST, that allow nearly unlimited training. Here, we developed a novel strategy we call mimicry embedding, which allows artificial intelligence (AI)-based analysis of variable pathogen-host data sets. We show that deep learning can be used to detect and classify single pathogens based on small differences.


Sign in / Sign up

Export Citation Format

Share Document