scholarly journals Shear Resistance Contribution of Constituent Elements Consisting RCS Joint

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Eun-Jin Lee ◽  
Jeong-Ho Moon ◽  
Moon-Sung Lee

In this study, constituent elements affecting the shear strength of RCS joints were investigated through experiment and analysis study. A series of five interior RCS beam-column joint specimens, which were classified as JH-type and CP-type, was tested to investigate the contribution of each shear resisting element such as JH (Joint Hoop), CP (Cover Plate), FBP (Face Bearing Plate), E-FBP (Extended Face Bearing Plate), TB (Transverse Beam), and BP (Band Plate). Comparison between experiment and analysis results showed that the stiffness and strength of the RCS joint were reasonably assessed from the analysis. As a result of the analysis, it was found that TB, E-FBP, and CP increased the shear strength by about 15%, 14%, and 26%, respectively. For the JH-type specimen, 70% of the shear strength of the RCS joint is supported by the inner element and 30% of the shear strength is supported by the outer element. Shear strength contribution ratio of the outer element of CP-type specimen is larger than that of the JH-type specimen. For all specimens except for SNI-1, around 10% of total shear strength is supported by FBP. The shear strength equation of the RCS joint proposed by ASCE underestimates the contribution of the outer element, while that of M-Kanno tends to overestimate it.

2017 ◽  
Vol 10 (1) ◽  
pp. 30-40
Author(s):  
G. SAVARIS ◽  
R. C. A. PINTO

Abstract Self-consolidating concrete is characterized by its high flowability, which can be achieved with the addition of superplasticizer and the reduction of the amount and size of coarse aggregates in the concrete mix. This high flowability allows the concrete to properly fill the formwork without any mechanical vibration. The reduction in volume and particle size of the coarse aggregates may result in lower shear strength of beams due to a reduced aggregate interlock. Therefore, an experimental investigation was conducted to evaluate the influence of the reduction in the volume fraction and the nominal size of coarse aggregate on concrete shear strength of self-consolidating beams. Six concrete mixes were produced, four self-consolidating and two conventionally vibrated. A total of 18 beams, with flexural reinforcement but without shear reinforcement were cast. These beams were tested under a four-point loading condition. Their failure modes, cracking patterns and shear resistances were evaluated. The obtained shear resistances were compared to the theoretical values given by the ACI-318 and EC-2 codes. The results demonstrated a lower shear resistance of self-consolidating concrete beams, caused mainly due to the reduced aggregate size.


Author(s):  
Aysha M Zaneeb ◽  
Rupen Goswami ◽  
C V R Murty

An analytical method is presented to estimate lateral shear strength (and identify likely mode and location of failure) in reinforced concrete (RC) cantilever columns of rectangular cross-section under combined axial force, shear force and bending moment. Change in shear capacity of concrete with flexural demand at a section is captured explicitly and the shear resistance offered by concrete estimated; this is combined with shear resistance offered by transverse and longitudinal reinforcement bars to estimate the overall shear capacity of RC columns. Shear–moment (V-M) interaction capacity diagram of an RC column, viewed alongside the demand diagram, identifies the lateral shear strength and failure mode. These analytical estimates compare well with test data of 107 RC columns published in literature; the test data corresponds to different axial loads, transverse reinforcement ratios, longitudinal reinforcement ratios, shear span to depth ratios, and loading conditions. Also, the analytical estimates are compared with those obtained using other analytical methods reported in literature; in all cases, the proposed method gives reasonable accuracy when estimating shear capacity of RC columns.  In addition, the method provides insights into the shear resistance mechanism in RC columns under the combined action of P-V-M, and it is simple to use.


2021 ◽  
Author(s):  
Kokilan Sathiyamoorthy

Shear and flexural behaviour of lightweight self-consolidating concrete (LWSCC) beams made of slag aggregates were investigated. Shear reinforced LWSCC beams showed similar shear behaviour compared to their non-shear reinforced counterparts until the formation of diagonal cracks but higher ultimate shear resistance and ductility. Compared to normal weight self-consolidating concrete (SCC) ones, non-shear reinforced LWSCC beams showed lower post-cracking shear resistance. Shear strength of LWSCC/SCC beams increased with the decrease of shear span to depth ratio. LWSCC beams showed higher number of cracks and wider crack width at failure than their SCC counterparts. LWSCC beams developed higher number of cracks with wider crack width at failure compared with their SCC counterparts. American, Canadian and British Codes were conservative in predicting shear strength of shear/non-shear reinforced LWSCC beams. LWSCC beams (with slag aggregate) showed good shear resistance compared with those made of other types of aggregates besides satisfactory flexural performance.


2013 ◽  
Vol 479-480 ◽  
pp. 1170-1174
Author(s):  
Hee Cheul Kim ◽  
Dae Jin Kim ◽  
Min Sook Kim ◽  
Young Hak Lee

The purpose of this study was to evaluate seismic performance of rehabilitated beam-column joint using FRP sheets and Buckling Restrained Braces (BRBs) and provide test data related to rehabilitated beam-column joints in reinforced concrete structures. The seismic performance of total six beam-column specimens is evaluated under cyclic loadings in terms of shear strength, effective stiffness, energy dissipation and ductility. The test results showed wrapping FRP sheets can contribute to increase the effect of confinement and the crack delay. Also retrofitting buckling restrained braces (BRBs) can improve the stiffness and energy dissipation capacity. Both FRP sheets and BRBs can effectively improve the strength, stiffness and ductility of seismically deficient beam-column joints.


2020 ◽  
Vol 15 ◽  
pp. 155892502094645
Author(s):  
Yao Chu ◽  
Haitao Lin ◽  
Hafsa Jamshaid ◽  
Qi Zhang ◽  
Pibo Ma

Warp-knitted brush fabrics are composed of an outer surface formed by weaving the front and rear needle beds with spacer yarns interposed between them. Warp-knitted brush fabrics can be used as a non-slip cover for car seat cushions; the adhesion between non-slip fabric and car seat is related to the shear strength of warp-knitted brush fabrics. In this article, to study the factors affecting the shear force of warp-knitted brush fabrics, three different processing methods and four different stretching speed intervals were used to find the effects of stiffeners and action of different speed intervals on shear properties of fabrics. The experimental results show that the stiffener treatment can improve the shear resistance of the warp-knitted brush fabrics, and the effect of different speed intervals can affect the shear resistance of fabrics. These findings will have a guiding significance in the design and production of warp-knitted brush fabrics applied to fabrics such as car seat cushions, and the results can also help to study the shear properties of warp-knitted brush fabrics for wider applications.


2013 ◽  
Vol 15 (1) ◽  
pp. 12-14 ◽  
Author(s):  
Zbigniew Czech ◽  
Agnieszka Kowalczyk ◽  
Joanna Ortyl ◽  
Jolanta Świderska

The use of acrylic pressure-sensitive adhesives (PSAs) is increasing in a variety of industrial fields. They have been applied in the manufacture of mounting tapes, self-adhesive labels, protective films, masking tapes, splicing tapes, carrier-free tapes, sign and marking films, and in diverse medical products, such as pads or self-adhesive bioelectrodes. In this study, the application of SiO2 nanoparticles in acrylic PSA was investigated. The properties of the newly synthesized and modified PSA were evaluated via the tack, peel adhesion, shear-strength and shrinkage. It has been found that the nanotechnologically-reinforced systems consisting of monodisperse non-agglomerated SiO2 nanoparticles and self-crosslinked acrylic PSAs showed a great enhancement in tack, peel adhesion, shear resistance and shrinkage, without showing the disadvantages known to result from the use of other inorganic additives. In this paper we evaluate the performance of SiO2 nanoparticles with a size of about 30 nm as inorganic filler into the synthesized solvent-borne acrylic PSA.


2012 ◽  
Vol 204-208 ◽  
pp. 3287-3293
Author(s):  
Xin Xue ◽  
Hiroshi Seki ◽  
Yu Song

There have been few reports on shear behavior of reinforced concrete (RC) beams with corroded stirrups, and the influence of stirrup corrosion has yet to be identified. Given this background, experience was carried out to investigate the shear behavior of RC beams containing corroded stirrups. Investigation results indicate that if the percentage local maximum mass loss is below 35%, there is little influence on the load-carrying mechanism. The concrete shear resistance seems to change little and the shear capacity can be calculated by just taking into consideration the reduction in stirrup shear resistance. It is also found that the anchorage conditions of the stirrups have a predominant influence on the shears of RC beams.


2015 ◽  
Vol 754-755 ◽  
pp. 49-53 ◽  
Author(s):  
Luqman Musa ◽  
Syed Zhafer Firdaus ◽  
Kamarudin Hussin ◽  
Poh Beng Teik

Natural rubber (SMR L grade), epoxidized natural rubber (ENR) 25 and 50 were loaded with hybrid tackifiers consisting of a mixture of coumarone-indene and gum rosin. The coumarone-indene was fixed at 40 parts per hundred of rubber (phr) while the concentration of gum rosin was varied from 20 to 80 phr. The viscosity, peel and shear strength of the adhesives prepared from the elastomers was studied. Results show that peel strength exhibits a maximum value at 60 phr gum rosin for SMR L-based adhesive while for ENR 25 and ENR 50 based adhesives a maximum value is observed at 40 phr gum rosin which was attributed to the occurrence of optimum wettability and compatibility at this tackifier loading. Meanwhile, viscosity and shear strength decreases with increasing gum rosin concentration. SMR L-based adhesive consistently exhibits higher viscosity and shear strength whereas ENR 25-based adhesive steadily shows higher value for all modes of peel tests.


Sign in / Sign up

Export Citation Format

Share Document