scholarly journals Intelligent Method of Supply Chain Circulation Industry Structure Based on Machine Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
JingFei Ran

In the deepening of supply chain competition, whether the structure of supply chain industry is reasonable and scientific has been severely tested. For warehousing, purchase and distribution channels, and customers, it largely determines whether the structure of supply chain is stable and efficient. The rationality of structure can determine the value of supply chain. By analyzing these four levels, this paper judges whether the supply chain structure is reasonable; the judgment standard is based on the three popular machine learning models, Stochastic Forest, XGBoost, and Support Vector Machine. The three models are based on a large number of real data environments. Through data simulation and parameter optimization, four supply chain characteristics are put into the model for simulation training for many times, and the three error numbers of MAE, RMSE, and MAPE of the model are analyzed to judge the reliability of the model. On this basis, through the combination of models, it is determined that the average percentage error of the combination of the three models is higher than that of the other pairwise combinations, reaching 0.937, which completes the expectation of intelligent prediction of supply chain structure.

2015 ◽  
Vol 5 (1) ◽  
pp. 56-73 ◽  
Author(s):  
Nicholas Ampazis

Managing inventory in a multi-level supply chain structure is a difficult task for big retail stores as it is particularly complex to predict demand for the majority of the items. This paper aims to highlight the potential of machine learning approaches as effective forecasting methods for predicting customer demand at the first level of organization of a supply chain where products are presented and sold to customers. For this purpose, we utilize Artificial Neural Networks (ANNs) trained with an effective second order algorithm, and Support Vector Machines (SVMs) for regression. We evaluated the effectiveness of the proposed approach using public data from the Netflix movie rental online DVD store in order to predict the demand for movie rentals during an especially critical for sales season, which is the Christmas holiday season. In our analysis we also integrated data from two other sources of information, namely an aggregator for movie reviews (Rotten Tomatoes), and a movie oriented social network (Flixster). Consequently, the approach presented in this paper combines the integration of data from various sources of information and the power of advanced machine learning algorithms for lowering the uncertainty barrier in forecasting supply chain demand.


2012 ◽  
pp. 1551-1565 ◽  
Author(s):  
Nicholas Ampazis

Estimating customer demand in a multi-level supply chain structure is crucial for companies seeking to maintain their competitive advantage within an uncertain business environment. This work explores the potential of computational intelligence approaches as forecasting mechanisms for predicting customer demand at the first level of organization of a supply chain where products are presented and sold to customers. The computational intelligence approaches that we utilize are Artificial Neural Networks (ANNs), trained with the OLMAM algorithm (Optimized Levenberg-Marquardt with Adaptive Momentum), and Support Vector Machines (SVMs) for regression. The effectiveness of the proposed approach was evaluated using public data from the Netflix movie rental online DVD store in order to predict the demand for movie rentals during the critical, for sales, Christmas holiday season.


Author(s):  
Nicholas Ampazis

Estimating customer demand in a multi-level supply chain structure is crucial for companies seeking to maintain their competitive advantage within an uncertain business environment. This work explores the potential of computational intelligence approaches as forecasting mechanisms for predicting customer demand at the first level of organization of a supply chain where products are presented and sold to customers. The computational intelligence approaches that we utilize are Artificial Neural Networks (ANNs), trained with the OLMAM algorithm (Optimized Levenberg-Marquardt with Adaptive Momentum), and Support Vector Machines (SVMs) for regression. The effectiveness of the proposed approach was evaluated using public data from the Netflix movie rental online DVD store in order to predict the demand for movie rentals during the critical, for sales, Christmas holiday season.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4655
Author(s):  
Dariusz Czerwinski ◽  
Jakub Gęca ◽  
Krzysztof Kolano

In this article, the authors propose two models for BLDC motor winding temperature estimation using machine learning methods. For the purposes of the research, measurements were made for over 160 h of motor operation, and then, they were preprocessed. The algorithms of linear regression, ElasticNet, stochastic gradient descent regressor, support vector machines, decision trees, and AdaBoost were used for predictive modeling. The ability of the models to generalize was achieved by hyperparameter tuning with the use of cross-validation. The conducted research led to promising results of the winding temperature estimation accuracy. In the case of sensorless temperature prediction (model 1), the mean absolute percentage error MAPE was below 4.5% and the coefficient of determination R2 was above 0.909. In addition, the extension of the model with the temperature measurement on the casing (model 2) allowed reducing the error value to about 1% and increasing R2 to 0.990. The results obtained for the first proposed model show that the overheating protection of the motor can be ensured without direct temperature measurement. In addition, the introduction of a simple casing temperature measurement system allows for an estimation with accuracy suitable for compensating the motor output torque changes related to temperature.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Jianli Shao ◽  
Xin Liu ◽  
Wenqing He

Imbalanced data exist in many classification problems. The classification of imbalanced data has remarkable challenges in machine learning. The support vector machine (SVM) and its variants are popularly used in machine learning among different classifiers thanks to their flexibility and interpretability. However, the performance of SVMs is impacted when the data are imbalanced, which is a typical data structure in the multi-category classification problem. In this paper, we employ the data-adaptive SVM with scaled kernel functions to classify instances for a multi-class population. We propose a multi-class data-dependent kernel function for the SVM by considering class imbalance and the spatial association among instances so that the classification accuracy is enhanced. Simulation studies demonstrate the superb performance of the proposed method, and a real multi-class prostate cancer image dataset is employed as an illustration. Not only does the proposed method outperform the competitor methods in terms of the commonly used accuracy measures such as the F-score and G-means, but also successfully detects more than 60% of instances from the rare class in the real data, while the competitors can only detect less than 20% of the rare class instances. The proposed method will benefit other scientific research fields, such as multiple region boundary detection.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2328 ◽  
Author(s):  
Md Shafiullah ◽  
M. Abido ◽  
Taher Abdel-Fattah

Precise information of fault location plays a vital role in expediting the restoration process, after being subjected to any kind of fault in power distribution grids. This paper proposed the Stockwell transform (ST) based optimized machine learning approach, to locate the faults and to identify the faulty sections in the distribution grids. This research employed the ST to extract useful features from the recorded three-phase current signals and fetches them as inputs to different machine learning tools (MLT), including the multilayer perceptron neural networks (MLP-NN), support vector machines (SVM), and extreme learning machines (ELM). The proposed approach employed the constriction-factor particle swarm optimization (CF-PSO) technique, to optimize the parameters of the SVM and ELM for their better generalization performance. Hence, it compared the obtained results of the test datasets in terms of the selected statistical performance indices, including the root mean squared error (RMSE), mean absolute percentage error (MAPE), percent bias (PBIAS), RMSE-observations to standard deviation ratio (RSR), coefficient of determination (R2), Willmott’s index of agreement (WIA), and Nash–Sutcliffe model efficiency coefficient (NSEC) to confirm the effectiveness of the developed fault location scheme. The satisfactory values of the statistical performance indices, indicated the superiority of the optimized machine learning tools over the non-optimized tools in locating faults. In addition, this research confirmed the efficacy of the faulty section identification scheme based on overall accuracy. Furthermore, the presented results validated the robustness of the developed approach against the measurement noise and uncertainties associated with pre-fault loading condition, fault resistance, and inception angle.


Sign in / Sign up

Export Citation Format

Share Document