scholarly journals Distribution Grids Fault Location employing ST based Optimized Machine Learning Approach

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2328 ◽  
Author(s):  
Md Shafiullah ◽  
M. Abido ◽  
Taher Abdel-Fattah

Precise information of fault location plays a vital role in expediting the restoration process, after being subjected to any kind of fault in power distribution grids. This paper proposed the Stockwell transform (ST) based optimized machine learning approach, to locate the faults and to identify the faulty sections in the distribution grids. This research employed the ST to extract useful features from the recorded three-phase current signals and fetches them as inputs to different machine learning tools (MLT), including the multilayer perceptron neural networks (MLP-NN), support vector machines (SVM), and extreme learning machines (ELM). The proposed approach employed the constriction-factor particle swarm optimization (CF-PSO) technique, to optimize the parameters of the SVM and ELM for their better generalization performance. Hence, it compared the obtained results of the test datasets in terms of the selected statistical performance indices, including the root mean squared error (RMSE), mean absolute percentage error (MAPE), percent bias (PBIAS), RMSE-observations to standard deviation ratio (RSR), coefficient of determination (R2), Willmott’s index of agreement (WIA), and Nash–Sutcliffe model efficiency coefficient (NSEC) to confirm the effectiveness of the developed fault location scheme. The satisfactory values of the statistical performance indices, indicated the superiority of the optimized machine learning tools over the non-optimized tools in locating faults. In addition, this research confirmed the efficacy of the faulty section identification scheme based on overall accuracy. Furthermore, the presented results validated the robustness of the developed approach against the measurement noise and uncertainties associated with pre-fault loading condition, fault resistance, and inception angle.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pratyusha Rakshit ◽  
Onintze Zaballa ◽  
Aritz Pérez ◽  
Elisa Gómez-Inhiesto ◽  
Maria T. Acaiturri-Ayesta ◽  
...  

AbstractThis paper presents a novel machine learning approach to perform an early prediction of the healthcare cost of breast cancer patients. The learning phase of our prediction method considers the following two steps: (1) in the first step, the patients are clustered taking into account the sequences of actions undergoing similar clinical activities and ensuring similar healthcare costs, and (2) a Markov chain is then learned for each group to describe the action-sequences of the patients in the cluster. A two step procedure is undertaken in the prediction phase: (1) first, the healthcare cost of a new patient’s treatment is estimated based on the average healthcare cost of its k-nearest neighbors in each group, and (2) finally, an aggregate measure of the healthcare cost estimated by each group is used as the final predicted cost. Experiments undertaken reveal a mean absolute percentage error as small as 6%, even when half of the clinical records of a patient is available, substantiating the early prediction capability of the proposed method. Comparative analysis substantiates the superiority of the proposed algorithm over the state-of-the-art techniques.


Author(s):  
Mokhtar Al-Suhaiqi ◽  
Muneer A. S. Hazaa ◽  
Mohammed Albared

Due to rapid growth of research articles in various languages, cross-lingual plagiarism detection problem has received increasing interest in recent years. Cross-lingual plagiarism detection is more challenging task than monolingual plagiarism detection. This paper addresses the problem of cross-lingual plagiarism detection (CLPD) by proposing a method that combines keyphrases extraction, monolingual detection methods and machine learning approach. The research methodology used in this study has facilitated to accomplish the objectives in terms of designing, developing, and implementing an efficient Arabic – English cross lingual plagiarism detection. This paper empirically evaluates five different monolingual plagiarism detection methods namely i)N-Grams Similarity, ii)Longest Common Subsequence, iii)Dice Coefficient, iv)Fingerprint based Jaccard Similarity  and v) Fingerprint based Containment Similarity. In addition, three machine learning approaches namely i) naïve Bayes, ii) Support Vector Machine, and iii) linear logistic regression classifiers are used for Arabic-English Cross-language plagiarism detection. Several experiments are conducted to evaluate the performance of the key phrases extraction methods. In addition, Several experiments to investigate the performance of machine learning techniques to find the best method for Arabic-English Cross-language plagiarism detection. According to the experiments of Arabic-English Cross-language plagiarism detection, the highest result was obtained using SVM   classifier with 92% f-measure. In addition, the highest results were obtained by all classifiers are achieved, when most of the monolingual plagiarism detection methods are used. 


2020 ◽  
Vol 10 (16) ◽  
pp. 5673 ◽  
Author(s):  
Daniela Cardone ◽  
David Perpetuini ◽  
Chiara Filippini ◽  
Edoardo Spadolini ◽  
Lorenza Mancini ◽  
...  

Traffic accidents determine a large number of injuries, sometimes fatal, every year. Among other factors affecting a driver’s performance, an important role is played by stress which can decrease decision-making capabilities and situational awareness. In this perspective, it would be beneficial to develop a non-invasive driver stress monitoring system able to recognize the driver’s altered state. In this study, a contactless procedure for drivers’ stress state assessment by means of thermal infrared imaging was investigated. Thermal imaging was acquired during an experiment on a driving simulator, and thermal features of stress were investigated with comparison to a gold-standard metric (i.e., the stress index, SI) extracted from contact electrocardiography (ECG). A data-driven multivariate machine learning approach based on a non-linear support vector regression (SVR) was employed to estimate the SI through thermal features extracted from facial regions of interest (i.e., nose tip, nostrils, glabella). The predicted SI showed a good correlation with the real SI (r = 0.61, p = ~0). A two-level classification of the stress state (STRESS, SI ≥ 150, versus NO STRESS, SI < 150) was then performed based on the predicted SI. The ROC analysis showed a good classification performance with an AUC of 0.80, a sensitivity of 77%, and a specificity of 78%.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 431 ◽  
Author(s):  
Oneeb Rehman ◽  
Hanqi Zhuang ◽  
Ali Muhamed Ali ◽  
Ali Ibrahim ◽  
Zhongwei Li

Certain small noncoding microRNAs (miRNAs) are differentially expressed in normal tissues and cancers, which makes them great candidates for biomarkers for cancer. Previously, a selected subset of miRNAs has been experimentally verified to be linked to breast cancer. In this paper, we validated the importance of these miRNAs using a machine learning approach on miRNA expression data. We performed feature selection, using Information Gain (IG), Chi-Squared (CHI2) and Least Absolute Shrinkage and Selection Operation (LASSO), on the set of these relevant miRNAs to rank them by importance. We then performed cancer classification using these miRNAs as features using Random Forest (RF) and Support Vector Machine (SVM) classifiers. Our results demonstrated that the miRNAs ranked higher by our analysis had higher classifier performance. Performance becomes lower as the rank of the miRNA decreases, confirming that these miRNAs had different degrees of importance as biomarkers. Furthermore, we discovered that using a minimum of three miRNAs as biomarkers for breast cancers can be as effective as using the entire set of 1800 miRNAs. This work suggests that machine learning is a useful tool for functional studies of miRNAs for cancer detection and diagnosis.


Life ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 181
Author(s):  
Christopher T. Mandrell ◽  
Torrey E. Holland ◽  
James F. Wheeler ◽  
Sakineh M. A. Esmaeili ◽  
Kshitij Amar ◽  
...  

A machine learning approach is applied to Raman spectra of cells from the MIA PaCa-2 human pancreatic cancer cell line to distinguish between tumor repopulating cells (TRCs) and parental control cells, and to aid in the identification of molecular signatures. Fifty-one Raman spectra from the two types of cells are analyzed to determine the best combination of data type, dimension size, and classification technique to differentiate the cell types. An accuracy of 0.98 is obtained from support vector machine (SVM) and k-nearest neighbor (kNN) classifiers with various dimension reduction and feature selection tools. We also identify some possible biomolecules that cause the spectral peaks that led to the best results.


2021 ◽  
Author(s):  
Md. Zahangir Alam ◽  
Albino Simonetti ◽  
Rafaelle Billantino ◽  
Nick Tayler ◽  
Chris Grainge ◽  
...  

Providing proper timely treatment of asthma, self-monitoring can play a vital role in disease control. Existing methods (such as peak flow meter, smart spirometer) requires special equipment and are not always used by the patient. Using voice recording as surrogate measures of lung function can be used to assess asthma, which has good potential to self-monitor asthma and could be integrated into telehealth platforms. This study aims to apply machine learning approach to predict lung functions from recorded voice for asthma patients. A threshold-based mechanism was designed to separate speech and breathing from recordings (323 recordings from 26 participants) and features extracted from these were combined with biological attributes and lung function (percentage predicted forced expiratory volume in 1 second, FEV1%). Three predictive models were developed: (a) regression models to predict lung function, (b) multi-class classification models to predict the severity, and (c) binary classification models to predict abnormality. Random Forest (RF), Support Vector Machine (SVM), and Linear Regression (LR) algorithms were implemented to develop these predictive models. Training and test samples were separated (70%:30% using balanced portioning). Features were normalised and 10-fold cross-validation used to measure the model's training performances on the training samples. Models were then run on the test samples to measure the final performances. The RF based regression model performed better with lowest root mean square error = 10.86, and mean absolute score = 11.47, as compared to other models. In predicting the severity of lung function, the SVM based model performed better with 73.20% accuracy. The RF based model performed better in binary classification models for predicting abnormality of lung function (accuracy = 0.85, F1-score = 0.84, and area under the receiver operating characteristic curve = 0.88). The proposed machine learning approach can predict lung function (in terms of FEV1%), from the recorded voice files, better than other published approaches. These models can be extended to predict both the severity and abnormality of lung function with reasonable accuracies. This technique could be used to develop future telehealth solutions including smartphone-based applications which have potential to aid decision making and self-monitoring in asthma.


Teknika ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 18-26
Author(s):  
Hendry Cipta Husada ◽  
Adi Suryaputra Paramita

Perkembangan teknologi saat ini telah memberikan kemudahan bagi banyak orang dalam mendapatkan dan menyebarkan informasi di berbagai social media platform. Twitter merupakan salah satu media yang kerap digunakan untuk menyampaikan opini sebagai bentuk reaksi seseorang atas suatu hal. Opini yang terdapat di Twitter dapat digunakan perusahaan maskapai penerbangan sebagai parameter kunci untuk mengetahui tingkat kepuasan publik sekaligus bahan evaluasi bagi perusahaan. Berdasarkan hal tersebut, diperlukan sebuah metode yang dapat secara otomatis melakukan klasifikasi opini ke dalam kategori positif, negatif, atau netral melalui proses analisis sentimen. Proses analisis sentimen dilakukan dengan proses data preprocessing, pembobotan kata menggunakan metode TF-IDF, penerapan algoritma, dan pembahasan atas hasil klasifikasi. Klasifikasi opini dilakukan dengan machine learning approach memanfaatkan algoritma multi-class Support Vector Machine (SVM). Data yang digunakan dalam penelitian ini adalah opini dalam bahasa Inggris dari para pengguna Twitter terhadap maskapai penerbangan. Berdasarkan pengujian yang telah dilakukan, hasil klasifikasi terbaik diperoleh menggunakan SVM kernel RBF pada nilai parameter 𝐶(complexity) = 10 dan 𝛾(gamma) = 1, dengan nilai accuracy sebesar 84,37% dan 80,41% ketika menggunakan 10-fold cross validation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261040
Author(s):  
Zazilah May ◽  
M. K. Alam ◽  
Nazrul Anuar Nayan ◽  
Noor A’in A. Rahman ◽  
Muhammad Shazwan Mahmud

Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable method for corrosion detection and classification in the modern Structural Health Monitoring (SHM) system. The efficiency of this system in detection and classification mainly depends on the suitable AE features. Therefore, many feature extraction and classification methods have been developed for corrosion detection and severity assessment. However, the extraction of appropriate AE features and classification of various levels of corrosion utilizing these extracted features are still challenging issues. To overcome these issues, this article proposes a hybrid machine learning approach that combines Wavelet Packet Transform (WPT) integrated with Fast Fourier Transform (FFT) for multiresolution feature extraction and Linear Support Vector Classifier (L-SVC) for predicting corrosion severity levels. A Laboratory-based Linear Polarization Resistance (LPR) test was performed on carbon-steel samples for AE data acquisition over a different time span. AE signals were collected at a high sampling rate with a sound well AE sensor using AEWin software. Simulation results show a linear relationship between the proposed approach-based extracted AE features and the corrosion process. For multi-class problems, three corrosion severity stages have been made based on the corrosion rate over time and AE activity. The ANOVA test results indicate the significance within and between the feature-groups where F-values (F-value>1) rejects the null hypothesis and P-values (P-value<0.05) are less than the significance level. The utilized L-SVC classifier achieves higher prediction accuracy of 99.0% than the accuracy of other benchmarked classifiers. Findings of our proposed machine learning approach confirm that it can be effectively utilized for corrosion detection and severity assessment in SHM applications.


Sign in / Sign up

Export Citation Format

Share Document