scholarly journals An IoT-Based Water Level Detection System Enabling Fuzzy Logic Control and Optical Fiber Sensor

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yani Zheng ◽  
Gaurav Dhiman ◽  
Ashutosh Sharma ◽  
Amit Sharma ◽  
Mohd Asif Shah

The usage of wireless sensors has become widespread for the collection of data for various Internet of Things (IoT) products. Specific wireless sensors use optical fiber technology as transmission media and lightwave signals as carriers, showing the advantages of antielectromagnetic interference, high sensitivity, and strong reliability. Hence, their application in IoT systems becomes a research hotspot. In this article, multiple optical fiber sensors are constructed as an IoT detection system, and a Transmission Control Protocol (TCP)/Internet Protocol (IP) communication stack is used for the sensor module. Furthermore, design of gateway module, data server, and monitoring module is established in order to run the data server in the Windows system and communicate across the network segments. Furthermore, the optical fiber sensor is connected to the development board with WiFi, meanwhile considering the optical fiber wireless network’s congestion problem. The fuzzy logic concept is introduced from the perspective of cache occupancy, and a fiber sensor’s network congestion control algorithm is proposed. In the experiment, the IoT detection system with multiple optical fiber sensors is used for water level detection, and the sensor’s real-time data detected by the User Interface (UI) are consistent with the feedback results. The proposed method is also compared with the SenTCP algorithm and the CODA algorithm, and it was observed that the proposed network congestion control algorithm based on the fuzzy logic can improve network throughput and reduce the network data packet loss.

1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari ◽  
Z. Chen ◽  
Q. Li

ABSTRACTStructurally integrated optical fiber sensors form the basis for smart structure technology. Over the past decade a variety of sensor configurations have been developed for measurement of strains and deformations in structures. Strains and deformations alter the refractive index and the geometry of the optical fiber material. These changes perturb the intensity, phase, and polarization of the light-wave propagating along the probing fiber. The optical perturbations are detected for the determination of strain. The research presented here describes the development of a new optical fiber sensor system for measurement of structural strains based on white light interferometry. An optical switch provides for multiplexing of strain signals from various locations in the structure. Redundant Bragg grating type fiber optic sensors as well as strain gauges were employed for comparison and verification of strain signals as measured by the new system. The system provides capability for distributed sensing of strains in large structures.


2011 ◽  
Vol 121-126 ◽  
pp. 4166-4170
Author(s):  
Shiuh Chuan Her ◽  
Chang Yu Tsai

Optical fiber sensors with light weight, small size and immunity to electromagnetic interference have been found to be a promising device for use in the development of smart structures. It is well known that the strain transfer from the host structure to the optical fiber sensor is dependent on the bonding characteristics such as adhesive layer and bonded length. In this investigation, the optical fiber sensor is surface bonded on the host structure. A theoretical model consisting of the optical fiber, adhesive layer and host material, is proposed to determine the strain in the optical fiber sensor induced by the host structure. The theoretical predictions were validated with the numerical analysis using the finite element method.


2021 ◽  
Vol 22 ◽  
pp. 48
Author(s):  
Yujie Li ◽  
Ming Zhang ◽  
Yu Zhu

This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.


2011 ◽  
Vol 467-469 ◽  
pp. 279-282
Author(s):  
Shiuh Chuan Her ◽  
Chang Yu Tsai

Optical fiber sensors with light weight, small dimension and immunity to electromagnetic interference are widely used in structural health monitoring device. In this investigation, a theoretical model of the strain transferred from the host material to the embedded optical fiber is developed to reveal the differential strains between the optical fiber sensor and host material. The theoretical predictions are validated with the numerical analysis using the finite element method. The percentage of strain in the host material actually transferred to the optical fiber is dependent on the bonding characteristics such as adhesive layer, protective coating and host material. Parametric study shows that the larger of the host material the more strain is transferred to the optical fiber.


2005 ◽  
Vol 297-300 ◽  
pp. 659-664
Author(s):  
Hideaki Murayama ◽  
Kazuro Kageyama ◽  
Isamu Ohsawa ◽  
Makoto Kanai ◽  
Kiyhoshi Uzawa ◽  
...  

We have developed a novel fiber-optic vibration sensors and applied commercially available strain and temperature sensors to health monitoring of composite structures. In this study, we constructed an optical fiber network integrating four types of optical fiber sensor into a carbon reinforced plastic (CFRP) panel. These four sensors were the vibration sensor developed by our laboratory, two distributed sensors based on Brillouin and Raman backscattering and Fiber Bragg Grating (FBG) sensors. By dealing the data obtained from the measurement systems corresponding to these four sensors, strain/stress and temperature distributions throughout the panel can be monitored. Vibration and elastic waves transmitting on the panel are also detected at several sensing points. Furthermore, we will be able to determine damage locations and modes by processing the wave signals. To make the panel with the optical fiber sensor network more sensitive and smarter, we are developing some techniques that can improve the performance of the sensors and can assess the structural integrity by analyzing measurement results. In this paper, the development of the first generation of our smart composite panel with the optical fiber sensors is described and the techniques making the panel more sensitive and smarter are also described.


2014 ◽  
Vol 530-531 ◽  
pp. 3-6
Author(s):  
Shinn Fwu Wang ◽  
Ming Jen Wang ◽  
Jyh Shyan Chiu

In this paper, a long cylindrical multimode optical fiber sensor (OFS) based on multiple total internal reflections in heterodyne interferometry is proposed. The cladding of the sensing portions of the fiber sensors is removed, but dont be coated with any metal films. With the OFS the phase shift difference due to the multiple total internal reflections (MTIRs) effect between the p-and s-polarizations can be measured by using the heterodyne interferometry. Substituting the phase shift difference into Fresnels equations, the refractive index for the tested medium can be calculated. According to numerical simulations and experimental results, the long cylindrical OFS is with the best resolution of 0.0000028 refractive index unit (RIU). However, the OFS could be valuable for chemical, biological and biochemical sensing. It has some merits, such as, high sensitivity, high resolution, stability, small size and in real-time measurement.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ying-Jie Luo ◽  
Shao-Yi Wu ◽  
Qin-Sheng Zhu ◽  
Xiao-Yu Li ◽  
Yong-Xin Li ◽  
...  

Abstract Previous studies of the gold-nanoparticles-covered U-type medical optical fiber sensor with millimeter size were mainly confined to the experimental aspect, while the corresponding theoretical studies were only for bare fibers based on geometrical optics or those for micron level photonic crystal fibers based on wave optics. Combining wave and geometrical optics, the gold-nanoparticles-covered U-type optical fiber sensor was simulated with millimeter size. The localized surface plasmon resonance absorption peak near 540 nm is obtained in the simulation, very close to that (≈560 nm) of the experimental value for the gold nanoparticles of 37 nm size. Compared with the refractive index (RI) sensitivity (≈7.10/RIU) for the plain, U-type optical fiber (≈43.50/RIU) exhibits more than 610% enhancement in the gold-nanoparticles-covered sample. Present studies would be helpful to the further simulation and design for various noble metal nanoparticles covered optical fiber sensors with different shapes.


1991 ◽  
Author(s):  
Nicholas L. Brooking ◽  
Luiz C. Guedes Valente ◽  
Liliana R. Kawase ◽  
Jose A. Afonso

Sign in / Sign up

Export Citation Format

Share Document