scholarly journals Vortex-Induced Vibration Suppression of Bridges by Inerter-Based Dynamic Vibration Absorbers

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Junjie Chen ◽  
Michael Z. Q. Chen ◽  
Yinlong Hu

The vortex-induced vibration may cause fatigue of a bridge structure, affecting the safety of vehicles and the comfort of pedestrians. Inerter is a two-terminal device, which has been applied in many areas. This paper studies the problem of suppressing the vortex-induced vibration of a bridge by using an inerter-based dynamic vibration absorber (IDVA). The performances in terms of the suspension travel and the vertical displacement of the bridge with different IDVAs in suppressing vortex-induced vibration are compared, and the effect of the installation position of IDVA on the performance of suppressing vortex-induced vibration is shown. The performance indexes for the vertical displacement of six IDVA arrangements are obtained by using an iterative method, where the performance indexes for the vertical displacement are minimized by using the optimization toolbox in a commercial software. The result shows that the optimal installation positions and the number of suitable installation positions are affected by the resonant mode. Among the six arrangements, one arrangement is identified to have the best performance of suppressing vortex-induced vibration. All the six arrangements have reduced the suspension travel performance.

Author(s):  
Bohdan M. Diveyev ◽  
Zinovij A. Stotsko

The main aim of this paper is improved dynamic vibration absorbers design with taking into account complex rotating machines dynamic The is considered for the complex vibroexitated constructions. Methods of decomposition and the numerical schemes synthesis are considered on the basis of new methods of modal methods. Development of of complicated machines and buildings in view of their interaction with system of dynamic vibration absorbers is under discussion.


1969 ◽  
Vol 91 (1) ◽  
pp. 282-287 ◽  
Author(s):  
A. V. Srinivasan

The analysis of parallel damped dynamic vibration absorbers is presented. The system considered is essentially a modification of the conventional damped vibration absorber and consists of adding, in parallel, a subsidiary undamped absorber mass in addition to the damped absorber mass. The analysis clearly shows that it is possible to obtain an undamped antiresonance in a dynamic absorber system which exhibits a well-damped resonance. While the bandwidth of frequencies between the damped peaks is not significantly increased, the amplitudes of the main mass are considerably smaller within the operational range of the absorber. The damped absorber mass and the main mass attain null simultaneously so that the vibratory force is transmitted directly to the undamped absorber. Numerical results are presented for the special case when the absorber masses have the same magnitude. Two cases of tuning have been considered: (a) when the absorber masses are tuned to the frequency of the main mass, and (b) when the absorber masses are tuned to the so-called favorable tuning frequency. Comparison of the results with those of the conventional absorber indicates that the parallel damped dynamic vibration absorber has definite advantages over the conventional damped vibration absorber.


2017 ◽  
Vol 17 (06) ◽  
pp. 1750056 ◽  
Author(s):  
W. B. Liu ◽  
H. L. Dai ◽  
L. Wang

The suppression of oscillations of an elastically mounted prism under galloping by a dynamic vibration absorber (DVA) with linear damping and stiffness is investigated. A model considering the dynamic coupling of the prism and the DVA is constructed, with the aerodynamic loads acting on the system represented by a quasi-steady approximation. Based on the coupled nonlinear governing equations of motion, a linear analysis is first conducted to explore the coupled frequency and damping, and the onset speed of galloping in the presence of the DVA. Subsequently, the normal form of the Hopf bifurcation for the coupled system near the onset of galloping is derived to characterize the type of instability (supercritical or subcritical), while evaluating the effects of the DVA parameters. The results show that with appropriate parametric values, the DVA has great impact on the onset speed of galloping and can significantly alleviate the oscillation amplitude of the prism.


2019 ◽  
Vol 27 (4) ◽  
pp. 504-515
Author(s):  
Ivan Kernytskyy ◽  
Serhii Baranovych ◽  
Serhii Berezovetskyi ◽  
Bohdan Diveyev ◽  
Orest Horbay ◽  
...  

The main task of this work is to analyze optimal design-system of the booms of boom-sprayers. The discrete-continue models of machines dynamics of such wheeled machines as boom-sprayer with elongated boom element with the attachment of dynamic vibration absorbers are offered. The algorithms for vibration decreasing of boom are received. The new vibroabsorbing elements are proposed. The paper contemplates the provision of dynamic vibration absorbers (DVA) of buffered impact masses and particle type. Such originally designed absorbers reduce vibration selectively in maximum vibration mode, without introducing vibration in other modes. The damping results from the exchange of momentum during impacts among the masses and masses and stops as the structure vibrates. A technique is developed to give the optimal DVA’s as single degree of freedom (SDOF) buffered system. The one-digit values are established not only for the dynamic vibration absorber parameters, but also for mechanical parameter of base structure – boom in connection points of the dynamic vibration absorbers. Finally, present research develops the genetic algorithms for optimal design searching by discrete-continuum DVA’s system – base system modeling.


Author(s):  
Vu Duc Phuc ◽  
Van-The Tran

The dynamic vibration absorber and tuned mass damper are widely used to suppress harmful vibration of the damped structures under external excitation. The multiple dynamic vibration absorbers have more benefit than the single dynamic vibration absorber. The multiple dynamic vibration absorbers are portability and easy to install because its size is significantly reduced compared to an individual damper. This paper proposes a design method to obtain optimal parameters of multiple dynamic vibration absorbers attached on damped primary structures by using the least squares estimation of equivalent linearization method. An explicit expression of damping ratio and tuning parameters of multiple dynamic vibration absorbers are determined for minimizing the maximum displacement of the primary structures based on the fixed-point theory. The new contribution is provided a reliable theoretical basis for optimizing parameters of the multiple dynamic vibration absorbers that are attached on the damped primary structures. The numerical results reveal the effectiveness of the proposed optimal parameters of multiple dynamic vibration absorbers in reduce vibration of damped primary structures. In the practical applications, this research results allow to divide a large dynamic vibration absorber into many equivalent small dynamic vibration absorbers, which are convenient for manufacturing and installing on the damped primary structures such as high buildings and cable-stayed bridges.


2021 ◽  
pp. 107754632110382
Author(s):  
Peng Sui ◽  
Yongjun Shen ◽  
Shaopu Yang ◽  
Junfeng Wang

In the field of dynamics and control, some typical vibration devices, including grounded stiffness, inerter and amplifying mechanism, have good vibration isolation and reduction effects, especially in dynamic vibration absorber (DVA). However, most of the current research studies only focus on the performance of a single device on the system, and those DVAs are gradually becoming difficult to meet the growth of performance demand for vibration control. On the basis of Voigt dynamic vibration absorber, a novel dynamic vibration absorber model based on the combined structure of grounded stiffness, inerter, and amplifying mechanism is presented, and the analytical solution of the optimal design formula is derived. First, the motion differential equation of the system is established, and the normalized amplitude amplification factor of the displacement is calculated. It is found that the system has three fixed points unrelated to the damping ratio. The optimal frequency ratio is obtained based on the fixed-point theory. In order to ensure the stability of the system, it is found that inappropriate inerter coefficient will cause the system instable when screening optimal grounded stiffness ratio. Accordingly, the best working range of inerter is determined. Finally, optimal grounded stiffness ratio and approximate optimal damping ratio are also obtained. The influence of inerter coefficient and magnification ratio on the response of the primary system is analyzed. The correctness of the derived analytical solution is verified by numerical simulation. Compared with other dynamic vibration absorbers, it is verified that presented model has superior vibration absorption performance and provides a theoretical basis for the design of a new type of dynamic vibration absorbers.


2003 ◽  
Vol 125 (3) ◽  
pp. 398-405 ◽  
Author(s):  
Toshihiko Asami ◽  
Osamu Nishihara

H ∞ optimization of the dynamic vibration absorbers is a classical optimization problem, and has been already solved more than 50 years ago. It is a well-known solution, but we know this solution is only an approximate one. Recently, one of the authors has proposed a new method for attaining the H∞ optimization of the absorber in linear systems. The new method enables us to obtain the exact algebraic solution of the H∞ optimization problem of the absorber. In this paper, we first apply this method to the design optimization of a viscous damped (Voigt type) absorber and a hysteretic damped absorber attached to undamped primary systems. For each absorber, six different transfer functions are taken here as performance indices to vibration suppression or isolation. As a result, we found the closed-form exact solutions to all transfer functions. The solutions obtained here are then compared with those of the approximate ones. Finally, we present the closed-form exact solutions to the hysteretic damped absorber attached to damped primary systems.


Author(s):  
LD Viet

A dynamic vibration absorber moving in the tangential or in the normal direction of a pendulum’s orbit can reduce the free vibration of the pendulum. This article discusses the problem of a pendulum structure attached with two dynamic vibration absorbers moving orthogonally at the same time. The analytical optimization is proposed to be done in two steps, in which the parameters of the linear dynamic vibration absorber moving in tangential direction and the non-linear dynamic vibration absorber moving in normal direction are chosen sequentially based on the stability maximization criterion. The analytical analysis shows that the two-dynamic vibration absorber scheme has small benefit in comparison with the single-dynamic vibration absorber scheme. The analytical conclusions are verified by numerical calculations. Although the conclusion of the article is unexpected, it is important in practice because the two-dynamic vibration absorber arrangement can be excluded in the design.


Sign in / Sign up

Export Citation Format

Share Document