scholarly journals Hydrodynamic Lubrication of Partially Textured Gas Parallel Slider Bearings with Orientation Ellipse Dimples

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fuxi Liu ◽  
Zhanlong Li ◽  
Chunjie Yang ◽  
Hongbao Wu ◽  
Huazhu Yin ◽  
...  

The hydrodynamic lubrication performance of partially textured gas parallel slider bearings with orientation ellipse dimples is investigated in this paper. By using the multigrid finite element method, the pressure distribution between a partially textured slider and a smooth slider is obtained. The geometric parameters of the ellipse dimples are optimized to maximize the average pressure under a given sliding speed. The numerical results show that geometric parameters such as orientation angle, depth, slender ratio, and area density have an important impact on hydrodynamic pressure. Besides, the effect of textured fraction on hydrodynamic pressure is investigated under a given sliding speed. It is observed that the optimum textured fraction for maximizing the average pressure is dependent on the sliding speed.

2015 ◽  
Vol 645-646 ◽  
pp. 474-479 ◽  
Author(s):  
Jing Hu Ji ◽  
Hao Wang ◽  
Yong Hong Fu

This paper develops an analytical model to investigate the effect of elliptical dimples on hydrodynamic lubrication of surface contact. The hydrodynamic pressure generated by elliptical dimples is solved by the multi-grid method. The evaluation criterion of hydrodynamic effect of dimensionless average pressure is calculated and presented with the variation of elliptical dimple depth, area density, slender ratio and inclination angle. The results indicate that geometrical parameters of elliptical dimples have an obvious influence on the hydrodynamic pressure. The hydrodynamic lubrication performance can be ameliorated by optimizing the geometrical parameters of elliptical dimples according to the operating parameters of the mechanical components.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Hao Fu ◽  
Jinghu Ji ◽  
Yonghong Fu ◽  
Xijun Hua

The influence of donut-shaped bump texture on the hydrodynamic lubrication performance for parallel surfaces is presented in this paper. A mathematical equation has been applied to express the shape of three-dimensional donut-shaped bump texture. Numerical simulation of the pressure distribution of lubricant between a textured slider and a smooth, moving slider has been performed to analyze the geometrical parameters' influence on the hydrodynamic performance for textured surfaces. The numerical results show that the convex of the donut-shaped bump provides a microstep slider, which can form a convergent wedge and build up hydrodynamic pressure. Optimum values of horizontal spacing and bump height are obtained to maximize the hydrodynamic pressure. It is also noted that the average pressure increases monotonically with the increase of bump radius, but decreases with the increase of vertical spacing and dimple depth, respectively.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 922
Author(s):  
Szabolcs Szávai ◽  
Sándor Kovács

Many calculating methods have been already developed for solving contact problems of parts such as gears, cams, and followers under fluid film lubrication conditions considering the temperature and pressure dependence. Similarly, the determination of the elasto-hydrodynamic pressure distribution the processes taking place in the lubricant and the contacting bodies, as well as in their environment, have to be dealt with simultaneously for the determination of the temperature field. A system of equation for the modelling of thermo-elastohydrodynamic lubrication between two contacting bodies containing hydrodynamic, thermodynamic, and strength problems is a highly non-linear system which becomes even more so if the temperature and pressure dependence of the material properties are considered. To solve this system, scientists started to use the finite element formulation in the 1960s and it was found to be a promising and reliable method. Earlier, the lubrication analysts used only the h-version finite element method (h-FEM) till 1991, when the first usage of the p-version finite element method (p-FEM) was published in the literature. In order to reduce the problem, in case of point or line contact, the contact bodies can be handled as semi-infinite ones. Following this simplification that had been successfully applied for the gap size determination, a substructure model was defined using analytical solution of the moving heat source. Instead of an iterative way between the solid and fluid problem, in this paper we present an efficient solution when thermal model for lubricant and surfaces were coupled and solved by a direct numerical method in one step.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Jinghu Ji ◽  
Yonghong Fu ◽  
Qinsheng Bi

The effect of partial surface texturing in the form of parabolic grooves, rectangular grooves, and triangular grooves on the hydrodynamic pressure is investigated in the present work. The dimensionless hydrodynamic pressure generated by the partial surface texturing is obtained by the multigrid method. The effect of the texturing parameters on the dimensionless average pressure is analyzed for a given set of operating parameters. The results indicate that the geometric shape, area density, groove depth, and orientation of the grooves have an obvious influence on the hydrodynamic pressure. However, the groove width has little effect on the dimensionless average pressure. The results of the present work demonstrate that surface texturing design is very important to generate additional hydrodynamic pressure according to the operating parameters of the mechanical components.


2014 ◽  
Vol 1061-1062 ◽  
pp. 653-657
Author(s):  
Gang Liu

The deformation of marine water-lubricated stern bearing which the lining materials are polymer materials is much bigger than the bearing built with metal materials. So, in order to improve the calculate accuracy of elastic hydrodynamic, it is necessary to consider the deformation of the lining. Both pressure and thickness distributions of water film which contrasts with the hydrodynamic lubrication are presented by the Reynolds equation, and combining with the elastic deformation of the stern bearing solved by using the finite element method theory. The result shows that the stern bearing water film pressure of elastic hydrodynamic lubrication is lower than that of hydrodynamic lubrication, while the water film thickness is larger.


Sign in / Sign up

Export Citation Format

Share Document