scholarly journals Development and Application of 3D Bioprinted Scaffolds Supporting Induced Pluripotent Stem Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Dezhi Lu ◽  
Yang Liu ◽  
Wentao Li ◽  
Hongshi Ma ◽  
Tao Li ◽  
...  

Three-dimensional (3D) bioprinting is a revolutionary technology that replicates 3D functional living tissue scaffolds in vitro by controlling the layer-by-layer deposition of biomaterials and enables highly precise positioning of cells. With the development of this technology, more advanced research on the mechanisms of tissue morphogenesis, clinical drug screening, and organ regeneration may be pursued. Because of their self-renewal characteristics and multidirectional differentiation potential, induced pluripotent stem cells (iPSCs) have outstanding advantages in stem cell research and applications. In this review, we discuss the advantages of different bioinks containing human iPSCs that are fabricated by using 3D bioprinting. In particular, we focus on the ability of these bioinks to support iPSCs and promote their proliferation and differentiation. In addition, we summarize the applications of 3D bioprinting with iPSC-containing bioinks and put forward new views on the current research status.

2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2012 ◽  
Vol 2 (1_suppl) ◽  
pp. s-0032-1319887-s-0032-1319887
Author(s):  
L. Jing ◽  
N. Christoforou ◽  
K. W. Leong ◽  
L. A. Setton ◽  
J. Chen

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Ebrahimi ◽  
Mehdi Forouzesh ◽  
Setareh Raoufi ◽  
Mohammad Ramazii ◽  
Farhoodeh Ghaedrahmati ◽  
...  

AbstractDuring the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.


2014 ◽  
Vol 26 (1) ◽  
pp. 210
Author(s):  
A. Gallegos-Cardenas ◽  
K. Wang ◽  
E. T. Jordan ◽  
R. West ◽  
F. D. West ◽  
...  

The generation of pig induced pluripotent stem cells (iPSC) opened the possibility to evaluate autologous neural cell therapy as a viable option for human patients. However, it is necessary to demonstrate whether pig iPSC are capable of in vitro neural differentiation similar to human iPSC in order to perform in vitro and in vivo comparative studies. Multiple laboratories have generated pig iPSC that have been characterised using pluripotent markers such as SSEA4 and POU5F1. However, correlations of pluripotent marker expression profiles among iPSC lines and their neural differentiation potential has not been fully explored. Because neural rosettes (NR) are composed of neural stem cells, our goal was to demonstrate that NR from pig iPSC can be generated, isolated, and expanded in vitro from multiple porcine iPSC lines similar to human iPSC and that the level of pluripotency in the starting porcine iPSC population (POUF51 and SSEA4 expression) could influence NRs development. Three lines of pig iPSC L1, L2, and L3 were cultured on matrigel-coated plates in mTeSR1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) and passaged every 3 to 4 days. For neural induction (NI), pig iPSC were disaggregated using dispase and plated. After 24 h, cells were maintained in N2 media [77% DMEM/F12, 10 ng mL–1 bovine fibroblast growth factor (bFGF), and 1X N2] for 15 days. To evaluate the differentiation potential to neuron and glial cells, NR were isolated, expanded in vitro and cultured for three weeks in AB2 medium (AB2, 1X ANS, and 2 mM L-Glutamine). Immunostaining assays were performed to determine pluripotent (POU5F1 and SSEA4), tight junction (ZO1), neural epithelial (Pax6 and Sox1), neuron (Tuj1), astrocyte (GFAP), and oligodendrocyte (O4) marker expression. Line L2 (POU5F1high and SSEA4low) showed a high potential to form NR (6.3.5%, P < 0.05) in comparison to the other 2 lines L1 (POU5F1low and SSEA4low) and L3 (POU5F1low and SSEA4high) upon NI. The NR immunocytochemistry results from Line L2 showed the presence of Pax6+ and Sox1– NRs cells at day 9 post-neural induction and that ZO1 started to localise at the apical border of NRs. At day 13, NRs cells were Pax6+ and Sox1+, and ZO1 was localised to the lumen of NR. After isolation and culture in vitro, NR cells expressed transcription factors PLAGL1, DACH1, and OTX2 through 2 passages, but were not detected in later passages. However, rosette cytoarchitecture was present up until passage 7 and were still Pax6+/Sox1+. NRs at passage 2 were cryopreserved and upon thaw showed normal NR morphology and were Pax6+/Sox1+. To characterise the plasticity of NRs, cells were differentiated. Tuj1 expression was predominant after differentiation indicating a bias towards a neuron phenotype. These results demonstrate that L2 pig iPSC (POUF51high and SSEA4low) have a high potential to form NR and neural differentiation parallels human iPSC neurulation events. Porcine iPSC should be considered as a large animal model for determining the safety and efficacy of human iPSC neural cell therapies.


Open Biology ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 180177 ◽  
Author(s):  
Yi-Ying Wu ◽  
Feng-Lan Chiu ◽  
Chan-Shien Yeh ◽  
Hung-Chih Kuo

Adult-onset neurodegenerative diseases are among the most difficult human health conditions to model for drug development. Most genetic or toxin-induced cell and animal models cannot faithfully recapitulate pathology in disease-relevant cells, making it excessively challenging to explore the potential mechanisms underlying sporadic disease. Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into disease-relevant neurons, providing an unparalleled platform for in vitro modelling and development of therapeutic strategies. Here, we review recent progress in generating Alzheimer's, Parkinson's and Huntington's disease models from patient-derived iPSCs. We also describe novel discoveries of pathological mechanisms and drug evaluations that have used these patient iPSC-derived neuronal models. Additionally, current human iPSC technology allows researchers to model diseases with 3D brain organoids, which are more representative of tissue architecture than traditional neuronal cultures. We discuss remaining challenges and emerging opportunities for the use of three-dimensional brain organoids in modelling brain development and neurodegeneration.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Steven D. Sheridan ◽  
Vasudha Surampudi ◽  
Raj R. Rao

Human induced pluripotent stem cells (hiPSCs) have core properties of unlimited self-renewal and differentiation potential and have emerged as exciting cell sources for applications in regenerative medicine, drug discovery, understanding of development, and disease etiology. Key among numerous criteria to assess pluripotency includes thein vivoteratoma assay that has been widely proposed as a standard functional assay to demonstrate the pluripotency of hiPSCs. Yet, the lack of reliability across methodologies, lack of definitive clinical significance, and associated expenses bring into question use of the teratoma assay as the “gold standard” for determining pluripotency. We propose use of thein vitroembryoid body (EB) assay as an important alternative to the teratoma assay. This paper summarizes the methodologies for creating EBs from hiPSCs and the subsequent analyses to assess pluripotency and proposes its use as a cost-effective, controlled, and reproducible approach that can easily be adopted to determine pluripotency of generated hiPSCs.


Gene ◽  
2019 ◽  
Vol 696 ◽  
pp. 72-79 ◽  
Author(s):  
Ehsan Saburi ◽  
Maryam Islami ◽  
Simzar Hosseinzadeh ◽  
Abbas Shapouri Moghadam ◽  
Reyhaneh Nassiri Mansour ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25462-25470 ◽  
Author(s):  
Xixi Dong ◽  
Haiyan Li ◽  
Lingling E ◽  
Junkai Cao ◽  
Bin Guo

Bioceramics akermanite enhanced vascularization and osteogenic differentiation of human iPSCs in 3D scaffolds in vitro and vivo.


2019 ◽  
Vol 12 (1) ◽  
pp. 015010 ◽  
Author(s):  
Ernesto Goulart ◽  
Luiz Carlos de Caires-Junior ◽  
Kayque Alves Telles-Silva ◽  
Bruno Henrique Silva Araujo ◽  
Silvana Aparecida Rocco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document