scholarly journals Reliable Fault Diagnosis of Rolling Bearing Based on Ensemble Modified Deep Metric Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zengbing Xu ◽  
Xiaojuan Li ◽  
Jinxia Wang ◽  
Zhigang Wang

A novel ensemble Yu’s norm-based deep metric learning (DMLYu) is proposed to diagnose the fault of rolling bearing in this paper, which can diagnose the fault classes through the information fusion method that combines the different diagnosis results produced by several Yu’s norm-based deep metric learning models with different scale signals. The suggested method is composed of three steps: firstly the vibration signal is decomposed into multiple IMF components by the EEMD method, then these IMF components are input into the DMLYu models which is called the modified deep metric learning model based on Yu’s norm-based similarity measure, respectively, to extract the feature parameters to diagnose the fault of rolling bearings from the different scales, and finally the final diagnosis decision is made by fusion strategy based on Bayesian belief method (BBM). At last, through a multifaceted diagnosis test of rolling bearing on different datasets, the effectiveness of the proposed ensemble DMLYu based on BBM is verified, and the superiority of the proposed diagnosis method is validated by comparing its diagnosis accuracy and generalization with DMLYu based on voting method and the individual DMLYu model.

2013 ◽  
Vol 774-776 ◽  
pp. 1499-1502
Author(s):  
Ting Feng Ming ◽  
Yong Xiang Zhang ◽  
Jing Li

The feature of correlation analysis were described and applied to analyzing the vibration signal of the gearbox. Aiming to that the diagnosis effect of the rolling bearings incipient fault was not good through the vibration spectrum and the resonance demodulation spectrum directly, the information fusion technology based on the correlation analysis is proposed to processing the vibration and acoustic resonance demodulation signal. The experimental results show that the presented correlation fusion analysis technology can be as the basis of the effective fault diagnosis method for the rolling bearings incipient defect.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bo Qin ◽  
Quanyi Luo ◽  
Juanjuan Zhang ◽  
Zixian Li ◽  
Yan Qin

The vibration signal of rolling bearing exhibits the characteristics of energy attenuation and complex time-varying modulation caused by the transmission with multiple interfaces and complex paths. In view of this, strong ambient noise easily masks faulty signs of rolling bearings, resulting in inaccurate identification or even totally missing the real fault frequencies. To overcome this problem, we propose a reinforced ensemble local mean decomposition method to capture and screen the essential faulty frequencies of rolling bearing, further boosting fault diagnosis accuracy. Firstly, the vibration signal is decomposed into a series of preliminary features through ensemble local mean decomposition, and then the frequency components above the average level are energy-enhanced. In this way, principal frequency components related to rolling bearing failure can be identified with the fast spectral kurtosis algorithm. Finally, the efficacy of the proposed approach is verified through both a benchmark case and a practical platform. The results show that the selected fault characteristic components are accurate, and the identification and diagnosis of rolling bearing status are improved. Especially for the signals with strong noise, the proposed method still could accurately diagnose fault frequency.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zengbing Xu ◽  
Xiaojuan Li ◽  
Hui Lin ◽  
Zhigang Wang ◽  
Tao Peng

A novel fault diagnosis method of rolling bearing based on deep metric learning and Yu norm is proposed in this paper, which is called a deep metric learning method based on Yu norm (DMN-Yu). In order to solve the misclassification caused by the traditional deep metric learning based on distance metric function, a similarity criterion based on Yu norm is introduced into the traditional deep metric learning. Firstly, the deep metric learning neural network (DMN) is used to adaptively extract the fault feature parameters. Secondly, considering that the data samples at the boundary between different fault categories can be misclassified, the marginal Fisher analysis method based on Yu norm is used to optimize the features. And then, BPNN classifier of DMN-Yu method is used to fine tune the network parameters and diagnose the fault category. Finally, the effectiveness and feasibility of the proposed DMN-Yu method is verified with the rolling bearing fault diagnosis test. And the superiority of the proposed diagnosis method is validated by comparing its diagnosis accuracy with the deep metric learning method based on Euclidean distance (DMN-Euc), traditional deep belief network (DBN), and support vector machine (SVM) combined with the common time-domain statistical features.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096947
Author(s):  
Hui Han ◽  
Lina Hao

Rolling bearings are the most frequently failed components in rotating machinery. Once a failure occurs, the entire system will be shut down or even cause catastrophic consequences. Therefore, a fault detection of rolling bearings is of great significance. Due to the complexity of the mechanical system, the randomness of the vibration signal appears on different scales. Based on the multi-scale fuzzy entropy (FE) analysis of the vibration signal, a rolling bearing fault diagnosis method based on smoothness priors approach (SPA) -FE-IFSVM is proposed. The SPA method was used to adaptively decompose the vibration signal and obtain the trend item and de-trend item of the vibration signal. Then the fuzzy entropy of the trend item and de-trend item was calculated respectively. Meanwhile, aiming at the problem that the support vector machine (SVM) cannot process the data set containing fuzzy messages and was sensitive to noise, the fuzzy support vector machine (FSVM) was introduced and improved, and then the FE as the feature vector was input into the improved fuzzy support vector machine (IFSVM) to identify the failure. The method was applied to the rolling bearing experimental data. The analysis results show that: this method can achieve 100% fault diagnosis accuracy when only two component features are extracted, which can effectively realize the fault diagnosis of rolling bearings.


Author(s):  
Chenhui Qian ◽  
Quansheng Jiang ◽  
Yehu Shen ◽  
Chunran Huo ◽  
Qingkui Zhang

Abstract Mechanical intelligent fault diagnosis is an important method to accurately identify the health status of mechanical equipment. Traditional fault diagnosis methods perform poorly in the diagnosis of rolling bearings under complex conditions. In this paper, a feature transfer learning model based on improved DenseNet and joint distribution adaptation (FT-IDJ) is proposed. With this model, we apply it to implement rolling bearing fault diagnosis. A lightweight DenseNet model is firstly proposed to extract the transferable features of the raw vibration signal. Furthermore, the parameters in the DenseNet are constrained by the domain adaptive regularization term and pseudo label learning. The marginal distribution discrepancy and the conditional distribution discrepancy of the learned transferable features are reduced by this way. The proposed method is validated by the diagnosis experiments with CWRU and Jiangnan University rolling bearing datasets. The experimental results showed that the proposed FT-IDJ has higher classification accuracy than DAN and other eight methods, which demonstrated its effectively learning transferable features from auxiliary data.


Author(s):  
Bo Fang ◽  
Hu Jianzhong ◽  
Cheng Yang ◽  
Yudong Cao ◽  
Minping Jia

Abstract Blind deconvolution (BD) is an effective algorithm for enhancing the impulsive signature of rolling bearings. As a convex optimization problem, the existing BDs have poor optimization performance and cannot effectively enhance the impulsive signature excited by weak faults. Moreover, the existing BDs require manual derivation of the calculation process, which brings great inconvenience to the researcher's personalized design of the maximization criterion. A new BD algorithm based on backward automatic differentiation (BAD) is proposed, which is named BADBD. The calculation process does not require manual derivation so a general solution of BDs based on different maximization criteria is realized. BADBD constructs multiple cascaded filters to filter the raw vibration signal, which makes up for the deficiency of single filter performance. The filter coefficients are determined by Adam algorithm, which improves the optimization performance of the proposed BADBD. BADBD is compared with classic BDs by synthesized and real vibration signals. The results reveal superior capability of BADBD to enhance the impulsive signature and the fault diagnosis performance is significantly better than the classic BDs.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Long Zhang ◽  
Binghuan Cai ◽  
Guoliang Xiong ◽  
Jianmin Zhou ◽  
Wenbin Tu ◽  
...  

Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.


2017 ◽  
Vol 868 ◽  
pp. 363-368
Author(s):  
Bang Sheng Xing ◽  
Le Xu

For the situation that it is difficult to diagnose rolling bearings fault effectively for small samples, so it proposes a feature extraction method of rolling bearing based on local mean decomposition (LMD) energy feature. Due to the frequency domain distribution of vibration signals will change when different faults occur in rolling bearings, so it can use LMD energy feature method to extract the fault features of rolling bearings. The instances analysis and extracted results show that the LMD energy feature can extract the vibration signal fault feature of rolling bearings effectively.


2020 ◽  
Vol 62 (8) ◽  
pp. 457-463 ◽  
Author(s):  
Shang Zhiwu ◽  
Liu Xia ◽  
Li Wanxiang ◽  
Gao Maosheng ◽  
Yu Yan

In order to improve fault feature extraction and diagnosis for rolling bearings, a fault diagnosis method based on fast dynamic time warping (fastDTW) and an adaptive Gaussian-Bernoulli deep belief network (AGBDBN) is proposed in this paper. Firstly, for the non-stationary vibration signal characteristics of the bearing, the fastDTW algorithm is used to calculate the residual vector of the fault signal, thereby enhancing the fault characteristic information. Then, according to the continuous vibration value of the bearing vibration signal, a standard deep belief network (DBN) is improved to deal with the problem that the optimal setting for the learning rate is difficult to achieve in the deep neural network training process and the AGBDBN model is used for fault diagnosis. Finally, the proposed method is compared with a variety of model diagnosis methods. The experimental results show that the proposed method achieved good diagnostic results.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Tao ◽  
Yilun Liu ◽  
Dalian Yang

In the rolling bearing fault diagnosis, the vibration signal of single sensor is usually nonstationary and noisy, which contains very little useful information, and impacts the accuracy of fault diagnosis. In order to solve the problem, this paper presents a novel fault diagnosis method using multivibration signals and deep belief network (DBN). By utilizing the DBN’s learning ability, the proposed method can adaptively fuse multifeature data and identify various bearing faults. Firstly, multiple vibration signals are acquainted from various fault bearings. Secondly, some time-domain characteristics are extracted from original signals of each individual sensor. Finally, the features data of all sensors are put into the DBN and generate an appropriate classifier to complete fault diagnosis. In order to demonstrate the effectiveness of multivibration signals, experiments are carried out on the individual sensor with the same conditions and procedure. At the same time, the method is compared with SVM, KNN, and BPNN methods. The results show that the DBN-based method is able to not only adaptively fuse multisensor data, but also obtain higher identification accuracy than other methods.


Sign in / Sign up

Export Citation Format

Share Document