scholarly journals A Mixed Decision Strategy for Freight and Passenger Transportation in Metro Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Yutao Ye ◽  
Junhua Guo ◽  
Lixin Yan

This paper proposes a mixed decision strategy for freight and passenger transportation in metro systems during off-peak hours (MTS-OPH). The definition of the mixed decision strategy is proposed, and fixed and flexible loading modes are considered for different passenger flow volumes. A mathematical model of the MTS-OPH is proposed and solved using an improved variable neighborhood search algorithm. Case studies demonstrate the performance and applicability of the proposed model and algorithm, and the MTS-OPH is discussed for different delivery distances, passenger flows, and metro network types. The proposed strategy is suitable for long-distance delivery, and the proposed model framework can be applied to different types of metro networks with different levels of complexity. The mixed decision strategy provides a decision support tool for metro and freight companies and can propose corresponding solutions according to different passenger flows.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jiadong Wang ◽  
Zhenzhou Yuan ◽  
Yonghao Yin

A metro disruption is a situation where metro service is suspended for some time due to unexpected events such as equipment failure and extreme weather. Metro disruptions reduce the level of service of metro systems and leave numerous passengers stranded at disrupted stations. As a means of disruption management, bus bridging has been widely used to evacuate stranded passengers. This paper focuses on the bus bridging problem under operational disruptions on a single metro line. Unlike previous studies, we consider dynamic passenger flows during the disruption. A multi-objective optimization model is established with objectives to minimize total waiting time, the number of stranded passengers and dispatched vehicles with constraints such as fleet size and vehicle capacity. The NSGA-II algorithm is used for the solution. Finally, we apply the proposed model to Shanghai Metro to access the effectiveness of our approaches in comparison with the current bridging strategy. Sensitivity analysis of the bus fleet size involved in the bus bridging problem was conducted.



2015 ◽  
Vol 14 (05) ◽  
pp. 971-991 ◽  
Author(s):  
Hadi Mokhtari ◽  
Ali Salmasnia

This paper discusses clustering as a new paradigm of optimization and devises an integration of clustering and an evolutionary algorithm, neighborhood search algorithm (NSA), for a multiple machine system with the case of reducible processing times (RPT). After the problem is formulated mathematically, evolutionary clustering search (ECS) is devised to reach the near-optimal solutions. It is a way of detecting interesting search areas based on clustering. In this approach, an iterative clustering is carried out which is integrated to evolutionary mechanism NSA to identify which subspace is promising, and then the search strategy becomes more aggressive in detected areas. It is interesting to find out such subspaces as soon as possible to increase the algorithm's efficiency by changing the search strategy over possible promising regions. Once relevant search regions are discovered by clustering they can be treated with special intensification by the NSA algorithm. Furthermore, different neighborhood mechanisms are designed to be embedded within the main NSA algorithm so as to enhance its performance. The applicability of the proposed model and the performance of the NSA approach are demonstrated via computational experiments.



2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
F. Sadeghi Naieni Fard ◽  
B. Naderi ◽  
A. A. Akbari

In the classical production-distribution centers problem, only assignment of customers, distribution centers, and suppliers is determined. This paper extends the problem of production-distribution centers assignment by considering sequencing decisions in the supply network. Nowadays, meeting delivery time of products is a competitive benefit; therefore, the objective is to minimize total tardiness. This problem is mathematically formulated by a mixed integer programming model. Then, using the proposed model, small instances of the problem can be optimally solved by GAMS software. Moreover, two metaheuristics based on variable neighborhood search and simulated annealing are proposed to solve large instances of the problem. Finally, performance of the proposed metaheuristics is evaluated by two sets of balanced and unbalanced instances. The computational results show the superiority of the variable neighborhood search algorithm.



2015 ◽  
Vol 6 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Masoud Rabbani ◽  
Amir Farshbaf-Geranmayeh ◽  
Mohsen Hasani ◽  
Mahyar Rezaei

The hub network expansion problem over planning horizon is addressed in this paper. In the extensive literature on hub network problem, it has widely been assumed that all P hub facilities must be located in current period and they do not take into account variation of demands, investment opportunities and net present cost. In this study, it is supposed that P hub facilities should have been located over planning horizon under variation of demands of every pair of nodes over time periods and also considering congestion effects at hub nodes. In this study, a mixed integer nonlinear programming formulation which minimizing the net present cost of planning horizon is presented. The Variable Neighborhood Search (VNS) algorithm is developed and successfully solved many instances of standard Childhood and Beyond (CAB) dataset and the results verify applicability of the proposed model and algorithm.



2021 ◽  
Author(s):  
H. R. E. H. Bouchekara ◽  
M. S. Shahriar ◽  
M. S. Javaid ◽  
Y. A. Sha’aban ◽  
M. Zellagui ◽  
...  


2021 ◽  
Vol 15 (6) ◽  
pp. 1-22
Author(s):  
Yashen Wang ◽  
Huanhuan Zhang ◽  
Zhirun Liu ◽  
Qiang Zhou

For guiding natural language generation, many semantic-driven methods have been proposed. While clearly improving the performance of the end-to-end training task, these existing semantic-driven methods still have clear limitations: for example, (i) they only utilize shallow semantic signals (e.g., from topic models) with only a single stochastic hidden layer in their data generation process, which suffer easily from noise (especially adapted for short-text etc.) and lack of interpretation; (ii) they ignore the sentence order and document context, as they treat each document as a bag of sentences, and fail to capture the long-distance dependencies and global semantic meaning of a document. To overcome these problems, we propose a novel semantic-driven language modeling framework, which is a method to learn a Hierarchical Language Model and a Recurrent Conceptualization-enhanced Gamma Belief Network, simultaneously. For scalable inference, we develop the auto-encoding Variational Recurrent Inference, allowing efficient end-to-end training and simultaneously capturing global semantics from a text corpus. Especially, this article introduces concept information derived from high-quality lexical knowledge graph Probase, which leverages strong interpretability and anti-nose capability for the proposed model. Moreover, the proposed model captures not only intra-sentence word dependencies, but also temporal transitions between sentences and inter-sentence concept dependence. Experiments conducted on several NLP tasks validate the superiority of the proposed approach, which could effectively infer meaningful hierarchical concept structure of document and hierarchical multi-scale structures of sequences, even compared with latest state-of-the-art Transformer-based models.



2021 ◽  
Vol 13 (3) ◽  
pp. 1190
Author(s):  
Gang Ren ◽  
Xiaohan Wang ◽  
Jiaxin Cai ◽  
Shujuan Guo

The integrated allocation and scheduling of handling resources are crucial problems in the railway container terminal (RCT). We investigate the integrated optimization problem for handling resources of the crane area, dual-gantry crane (GC), and internal trucks (ITs). A creative handling scheme is proposed to reduce the long-distance, full-loaded movement of GCs by making use of the advantages of ITs. Based on this scheme, we propose a flexible crossing crane area to balance the workload of dual-GC. Decomposing the integrated problem into four sub-problems, a multi-objective mixed-integer programming model (MIP) is developed. By analyzing the characteristic of the integrated problem, a three-layer hybrid heuristic algorithm (TLHHA) incorporating heuristic rule (HR), elite co-evolution genetic algorithm (ECEGA), greedy rule (GR), and simulated annealing (SA) is designed for solving the problem. Numerical experiments were conducted to verify the effectiveness of the proposed model and algorithm. The results show that the proposed algorithm has excellent searching ability, and the simultaneous optimization scheme could ensure the requirements for efficiency, effectiveness, and energy-saving, as well as the balance rate of dual-GC.



2014 ◽  
Vol 24 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Baozhen Yao ◽  
Ping Hu ◽  
Mingheng Zhang ◽  
Maoqing Jin

Abstract Automated Incident Detection (AID) is an important part of Advanced Traffic Management and Information Systems (ATMISs). An automated incident detection system can effectively provide information on an incident, which can help initiate the required measure to reduce the influence of the incident. To accurately detect incidents in expressways, a Support Vector Machine (SVM) is used in this paper. Since the selection of optimal parameters for the SVM can improve prediction accuracy, the tabu search algorithm is employed to optimize the SVM parameters. The proposed model is evaluated with data for two freeways in China. The results show that the tabu search algorithm can effectively provide better parameter values for the SVM, and SVM models outperform Artificial Neural Networks (ANNs) in freeway incident detection.



2012 ◽  
Vol 178-181 ◽  
pp. 1802-1805
Author(s):  
Chun Yu Ren

The paper is focused on the Multi-cargo Loading Problem (MCLP). Tabu search algorithm is an algorithm based on neighborhood search. According to the features of the problem, the essay centered the construct initial solution to construct neighborhood structure. For the operation, 1-move and 2-opt were applied, it can also fasten the speed of convergence, and boost the search efficiency. Finally, the good performance of this algorithm can be proved by experiment calculation and concrete examples.



Sign in / Sign up

Export Citation Format

Share Document