scholarly journals Influence of Steel Fiber on Durability Performance of Concrete under Freeze-Thaw Cycles

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dong Li ◽  
Qing Guo ◽  
Shi Liu

To verify the steel fiber effect on durability properties of the concrete in cold regions, four types of steel fiber reinforced concrete were prepared, and the fiber dosage were 0, 20 kg, 40 kg, and 60 kg, respectively. The rapid freeze-thaw test was adopted to evaluate the frost resistance durability, and the evaluation indexes of the mass loss and the residual dynamic modulus of elasticity (RDME) the samples were compared, respectively. The frost damage of the matrix regarding the different freeze-thaw cycles (FTCs) was evaluated using the Weibull distribution. The capillary water absorption (CWA) experiments were also conducted corresponding to different freeze-thaw cycles (FTCs). The results revealed that the mass loss was not an effective index for frost damage evaluation of macro-steel fiber reinforced concrete. The FTCs corresponding to the loss of RDME to 60% were enhanced noticeably with the increase of fiber content. The relationship between the frost damage and the FTCs can be evaluated using the Weibull distribution. Compared with the PC, the frost resistance grade of the reinforced concrete with fiber dosage of 60 kg/m3 increased by 125%. After the frost action, the CWA capacity of concrete improved significantly, while, under the same FTCs, the CWA of the matrix decreased with the increment of macro-steel fiber dosage. The steel fiber showed a strong positive influence on enhancing the durability performance of concrete in cold region.

2011 ◽  
Vol 368-373 ◽  
pp. 357-360
Author(s):  
Lei Jiang ◽  
Di Tao Niu ◽  
Min Bai

Based on the fast freeze-thaw test in 3.5% NaCl solution, the frost resistance of steel fiber reinforced concrete (SFRC) was studied in this paper. On the basis of scanning electron microscope (SEM) and mercury intrusion method, the microstructure and pore structure of SFRC was analysed. The reinforced mechanism of SFRC under the cooperation of freeze-thaw and NaCl solution was discussed. The test results show that adding appropriate amount of steel fibers into concrete can reduce the pore porosity and improve the compactness of concrete. The effects of steel fiber with proper volume fraction can inhibit the peeling of the concrete and reduce its damage rate. The volume of steel fiber on the frost-resisting property of SFRC is obvious.


Author(s):  
V. A. Dorf ◽  
◽  
R. O. Krasnovskij ◽  
D. E. Kapustin ◽  
P. S. Sultygova ◽  
...  

The paper considers the effects of high temperatures in case of fire on the change in impermeability of steel fiber reinforced concrete having a high-strength cement-sand matrix and various content of fiber of different types, sizes, and strength. It is shown that in the temperature range from 20° to 1100° C in the diagram “Heating temperature - impermeability class», the matrix and steel fiber concrete(SFC) have a S-shaped character, and in case of heating temperature of over 100 °C, there comes a distinct decrease in impermeability.


2010 ◽  
Vol 150-151 ◽  
pp. 243-246 ◽  
Author(s):  
Lei Jiang ◽  
Di Tao Niu ◽  
Min Bai

In order to study various factor affecting durability of steel fiber reinforced concrete (SFRC), basic experimental research that combine the action of freezing-thawing cycles and deicing salt to SFRC was conducted. In the experiment, the volume fraction of steel fiber and number of freeze-thaw circulation are taken as variable parameter. Based on the different numbers of freeze-thaw circulation, weight losing of SFRC, splitting strength and the dynamic modulus of elasticity were measured. Furthermore, the reinforced mechanism of the SFRC under the action of freeze-thaw was analysed. The test results show that after adding a certain amount of steel fiber to the concrete, cracks in concrete at early stage are effectively prevented and the permeability of concrete is obviously reduced, thus the durability of concrete is improved. The reinforced actions of steel fiber on splitting strength of concrete are notable and the influence of steel fiber volume fraction on the frost-resisting property is obvious. On the contrary, the negative effects of steel fiber with high volume fraction on the splitting strength of concrete exist. The best performance of SFRC can be got when the steel fiber quantity is 1.5%.


2015 ◽  
Vol 723 ◽  
pp. 440-444
Author(s):  
Liang Feng Dong ◽  
Shi Ping Zhang

This paper presents the results on the influence of steel fiber on the performance of concrete materials. The performance of steel fiber reinforced concrete was studied through mechanical testing, frost resistance, carbonation and impermeability testing. Experimental results showed that steel fibers can improve compressive and flexural strengths, and especially can significantly improve flexural strength. Frost resistance can also be improved, and the higher the volume of steel fibers added, the more the freeze-thaw cycles that concrete could resist. Furthermore, steel fiber can not only slow down the carbonation rate indirectly, but also improve the impermeability of concrete, and impermeability enhanced with the increase of steel fiber.


2016 ◽  
Vol 857 ◽  
pp. 363-366 ◽  
Author(s):  
Mustaqqim Abdul Rahim ◽  
Zuhayr Md Ghazaly ◽  
Raja Nurazira Raja Mamat ◽  
Muhammad Azizi Azizan ◽  
Nur Fitriah Isa ◽  
...  

Slurry Infiltrated Fiber Reinforced Concrete (SIFCON) is a relatively new high performance and advanced material and can be considered as a special type of Steel Fiber Reinforced Concrete (SFRC). The hooked-end shape steel fiber assist in controlling the propagation of cracking in the matrix by improving the overall cracking resistance and by bridging across even smaller cracks. In this paper, the comparison between the steel fiber reinforcement and BRC wire mesh will obtain and also between the different thickness size. The steel fiber will use from different percentage based on volume frictions which are 0.5%, 1% and 2% with aspect ratio 67. The beam is tested for flexural strength. The relationship between loads versus deflection represented graphically. The highest flexural strength obtained in this research is 19.34 MPa with 2% volume friction of steel fiber.


Sign in / Sign up

Export Citation Format

Share Document