scholarly journals Kernel Regression Residual Decomposition Method to Detect Rolling Element Bearing Faults

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaoqian Wang ◽  
Dali Sheng ◽  
Jinlian Deng ◽  
Wei Zhang ◽  
Jie Cai ◽  
...  

The raw vibration signal carries a great deal of information representing the mechanical equipment's health conditions. However, in the working condition, the vibration response signals of faulty components are often characterized by the presence of different kinds of impulses, and the corresponding fault features are always immersed in heavy noises. Therefore, signal denoising is one of the most important tasks in the fault detection of mechanical components. As a time-frequency signal processing technique without the support of the strictly mathematical theory, empirical mode decomposition (EMD) has been widely applied to detect faults in mechanical systems. Kernel regression (KR) is a well-known nonparametric mathematical tool to construct a prediction model with good performance. Inspired by the basic idea of EMD, a new kernel regression residual decomposition (KRRD) method is proposed. Nonparametric Nadaraya–Watson KR and a standard deviation (SD) criterion are employed to generate a deep cascading framework including a series of high-frequency terms denoted by residual signals and a final low-frequency term represented by kernel regression signal. The soft thresholding technique is then applied to each residual signal to suppress noises. To illustrate the feasibility and the performance of the KRRD method, a numerical simulation and the faulty rolling element bearings of well-known open access data as well as the experimental investigations of the machinery simulator are performed. The fault detection results show that the proposed method enables the recognition of faults in mechanical systems. It is expected that the KRRD method might have a similar application prospect of EMD.


2021 ◽  
pp. 107754632110228
Author(s):  
Sunil Lonare ◽  
Neville Fernandes ◽  
Aditya Abhyankar

The wavelet transform is a state of the art time–frequency analysis method for rolling element bearing localized fault detection, using vibration signals. When these localized faults are present at more than one location of bearing, it is called “multi-fault.” Using wavelet transform fault detection with high severity is possible, but this method fails to detect the presence of fault as well as the location of a fault in multi-fault case and when the fault severity is low. The identification of the fault location, in rolling element bearing when more than one location of bearing contains a localized fault, is very useful for further root cause analysis; therefore, multi-fault detection is a challenge today. In the present work, a new morphological joint time–frequency adaptive kernel–based semi-smart framework is developed to address this challenge. In morphological joint time–frequency adaptive kernel, the kernel will adapt itself by analyzing the basic morphology of the bearing under observation and by considering the location of a fault. The simulation and experimental results show that morphological joint time–frequency adaptive kernel–based framework is able to detect low severity single fault as well as the location of the localized fault on rolling element bearing in the multi-fault case. Experimental results also show that the morphological joint time–frequency adaptive kernel framework is independent of bearing dimensions as well as machine operating conditions.



Author(s):  
Y Zhou ◽  
J Chen ◽  
G M Dong ◽  
W B Xiao ◽  
Z Y Wang

The vibration signals of rolling element bearings are random cyclostationary when they have faults. Also, statistical properties of the signals change periodically with time. The accurate analysis of time-varying signals is an essential pre-requisite for the fault diagnosis and hence safe operation of rolling element bearings. The Wigner distribution is probably most widely used among the Cohen’s class in order to describe how the spectral content of a signal changes over time. However, the basic nature of such signals causes significant interfering cross-terms, which do not permit a straightforward interpretation of the energy distribution. To overcome this difficulty, the Wigner–Ville distribution (WVD) based on the cyclic spectral density (CSD) is discussed in this article. It is shown that the improved WVD, based on CSD of a long time series, can render the time–frequency distribution less susceptible to noise, and restrain the cross-terms in the time–frequency domain. Simulation and experiment of the rolling element-bearing fault diagnosis are performed, and the results indicate the validity of WVD based on CSD in time–frequency analysis for bearing fault detection.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guang-Quan Hou ◽  
Chang-Myung Lee

Fault diagnosis and failure prognostics for rolling element bearing are helpful for preventing equipment failure and predicting the remaining useful life (RUL) to avoid catastrophic failure. Spall size is an important fault feature for RUL prediction, and most research work has focused on estimating the fault size under constant speed conditions. However, estimation of the defect width under time-varying speed conditions is still a challenge. In this paper, a method is proposed to solve this problem. To enhance the entry and exit events, the edited cepstrum is used to remove the determined components. The preprocessed signal is resampled from the time domain to the angular domain to eliminate the effect of speed variation and measure the defect size of a rolling element bearing on outer race. Next, the transient impulse components are extracted by local mean decomposition. The entry and exit points when the roller passes over the defect width on the outer race were identified by further processing the extracted signal with time-frequency analysis based on the continuous wavelet transform. The defect size can be calculated with the angle duration, which is measured from the identified entry and exit points. The proposed method was validated experimentally.



2001 ◽  
Vol 123 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Peter W. Tse ◽  
Y. H. Peng ◽  
Richard Yam

The components which often fail in a rolling element bearing are the outer-race, the inner-race, the rollers, and the cage. Such failures generate a series of impact vibrations in short time intervals, which occur at Bearing Characteristic Frequencies (BCF). Since BCF contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations, they are difficult to find in their frequency spectra when using the common technique of Fast Fourier Transforms (FFT). Therefore, Envelope Detection (ED) is always used with FFT to identify faults occurring at the BCF. However, the computation of ED is complicated, and requires expensive equipment and experienced operators to process. This, coupled with the incapacity of FFT to detect nonstationary signals, makes wavelet analysis a popular alternative for machine fault diagnosis. Wavelet analysis provides multi-resolution in time-frequency distribution for easier detection of abnormal vibration signals. From the results of extensive experiments performed in a series of motor-pump driven systems, the methods of wavelet analysis and FFT with ED are proven to be efficient in detecting some types of bearing faults. Since wavelet analysis can detect both periodic and nonperiodic signals, it allows the machine operator to more easily detect the remaining types of bearing faults which are impossible by the method of FFT with ED. Hence, wavelet analysis is a better fault diagnostic tool for the practice in maintenance.



2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Karthik Kappaganthu ◽  
C. Nataraj

Rolling element bearings are among the key components in many rotating machineries. It is hence necessary to determine the condition of the bearing with a reasonable degree of confidence. Many techniques have been developed for bearing fault detection. Each of these techniques has its own strengths and weaknesses. In this paper, various features are compared for detecting inner and outer race defects in rolling element bearings. Mutual information between the feature and the defect is used as a quantitative measure of quality. Various time, frequency, and time-frequency domain features are compared and ranked according to their cumulative mutual information content, and an optimal feature set is determined for bearing classification. The performance of this optimal feature set is evaluated using an artificial neural network with one hidden layer. An overall classification accuracy of 97% was obtained over a range of rotating speeds.



Author(s):  
Ahmet Soylemezoglu ◽  
S. Jagannathan ◽  
Can Saygin

In this paper, a novel Mahalanobis–Taguchi system (MTS)-based fault detection, isolation, and prognostics scheme is presented. The proposed data-driven scheme utilizes the Mahalanobis distance (MD)-based fault clustering and the progression of MD values over time. MD thresholds derived from the clustering analysis are used for fault detection and isolation. When a fault is detected, the prognostics scheme, which monitors the progression of the MD values, is initiated. Then, using a linear approximation, time to failure is estimated. The performance of the scheme has been validated via experiments performed on rolling element bearings inside the spindle headstock of a microcomputer numerical control (CNC) machine testbed. The bearings have been instrumented with vibration and temperature sensors and experiments involving healthy and various types of faulty operating conditions have been performed. The experiments show that the proposed approach renders satisfactory results for bearing fault detection, isolation, and prognostics. Overall, the proposed solution provides a reliable multivariate analysis and real-time decision making tool that (1) presents a single tool for fault detection, isolation, and prognosis, eliminating the need to develop each separately and (2) offers a systematic way to determine the key features, thus reducing analysis overhead. In addition, the MTS-based scheme is process independent and can easily be implemented on wireless motes and deployed for real-time monitoring, diagnostics, and prognostics in a wide variety of industrial environments.



2015 ◽  
Vol 10 (5) ◽  
pp. 360-365
Author(s):  
Chiranjan Manda ◽  
Ravi Ranjan Prasad ◽  
Partha Pratim Sengupta


Author(s):  
Sudarsan Sahoo ◽  
J. K. Das ◽  
Bapi Debnath

The defect present in the bearing of a rolling element may affect the performance of the rotating machinery and may reduce its efficiency. For this reason the condition monitoring of a rolling element bearing is very essential. So many measuring parameters are there to diagnose the fault in a rolling element bearing. Acoustic signature monitoring is one of them. Every rolling element bearing has its own acoustic signature when it is in healthy condition and when the bearing get defected then there is a change in its original acoustic signature. This change in acoustic signature can be monitored and analyzed to detect the fault present in the bearing. But the noise present in the acquired acoustic signal may affect the analysis. So the noisy acoustic signal must be filtered before the analysis. In this work the experiment is performed in two stages. In first stage the filtration of the acquired acoustic signal is done by employing the active noise cancellation (ANC) filtering techniques. In second stage the filtered signal is used for the further analysis. For the analysis initially the static analysis is done and then the frequency and the time-frequency analysis is done to diagnose the defect in the bearing. From all the three analysis the information about the defect present in the bearing is well detected.



Sign in / Sign up

Export Citation Format

Share Document