scholarly journals Pasting and Dough Rheological Properties of Ackee (Blighia sapida) Aril Flour: A Contribution to the Search for Wheat Flour Substitutes

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ramiro Torres-Gallo ◽  
Ricardo Durán ◽  
José García-Camargo ◽  
Oswaldo Morales ◽  
Diofanor Acevedo ◽  
...  

Wheat is one of the most widely used cereals in the world. However, studies consider wheat flour doughs to be of low nutritional quality, as there is now greater public awareness of celiac disease and gluten intolerance. Therefore, consumers are demanding healthier and more varied food products. Consequently, wheat flour is being replaced fully or partially by flours from other sources with higher quality. Hence, the main objective of this work was to report the effect of blending wheat flour with ackee aril flour, until the total replacement of wheat flour, on pasting and dough rheological properties. Five different levels of blending were analyzed: wheat to ackee aril flour mass ratios of 100 : 0, 75 : 25, 50 : 50, 25 : 75, and 0 : 100. Pasting properties (pasting temperature, peak viscosity, ease of cooking, swelling power, final viscosity at 50  °C, and thixotropy) were analyzed; and steady-state shear measurements were used to obtain consistency coefficients ( K ) and flow behavior indexes ( n ) after data was fitted to the Power Law and Herschel-Bulkley models. The gradual addition of the ackee aril flour fraction produced an increase in ash, fat, protein, and fiber content; while water and carbohydrate content showed the opposite behavior in the obtained composite flour. Consequently, the partial or full replacement of wheat flour changed the rheological properties of the produced doughs, as well as the quality of the final product. These changes were mostly related to the protein and carbohydrate content of the ackee aril flour fraction. In general, doughs showed a pseudoplastic behavior with thixotropy whose viscosity decreased as the addition of ackee aril flour was increased. Pasting properties of blends involving 25 %-75 % ackee aril flour demonstrate the feasibility of including these flours in products subjected to high processing temperatures such as canned products or even to produce chips and pasta.

2017 ◽  
Vol 54 (6) ◽  
pp. 1597-1607 ◽  
Author(s):  
Xingli Liu ◽  
Taihua Mu ◽  
Karim Diego Yamul ◽  
Hongnan Sun ◽  
Miao Zhang ◽  
...  

2018 ◽  
Vol 43 (6) ◽  
pp. e13857 ◽  
Author(s):  
Georgiana Gabriela Codină ◽  
Adriana Dabija ◽  
Silviu Gabriel Stroe ◽  
Sorina Ropciuc

2020 ◽  
Vol 10 (20) ◽  
pp. 7225
Author(s):  
Ionica Coțovanu ◽  
Ana Batariuc ◽  
Silvia Mironeasa

Replacement of refined wheat flour with milling fractions of quinoa seeds represents a useful way for the formulation of value-added baked products with beneficial characteristics to consumers. The aim of this study was to assess the chemical composition and physical properties of different particle sizes of quinoa flour on Falling number index (FN) and dough rheological properties determined by Mixolab in a planned research based on design of experiment by using full factorial design. The ash and protein contents were higher in medium particle size, whereas the carbohydrates presented a lower value, this fraction having also the highest water absorption and water retention capacity. The reduction of particles led to an increased swelling capacity and a decreased bulk density. The particle size significantly influenced the FN values in linear and quadratic terms (p < 0.05), showing a decrease with the particle size increasing. Particle size decrease significantly increased water absorption and the rate of protein weakening due to heat (C1–2), whereas starch gelatinization rate (C3–2), starch breakdown rate related to amylase activity (C3–4) and starch retrogradation speed (C5–4) decreased. By increasing the amount of quinoa flour (QF) in wheat flour, the dough stability and the torques C2, C3, C4 and C5 followed a decreased trend, whereas water absorption and dough development time rose. Optimization, determined by particle size and level of QF added in wheat flour based on which of the combination gives the best rheological properties, showed that the composite flour containing 8.98% quinoa flour of medium particle size was the most suitable.


2019 ◽  
Vol 11 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Folasade Maria Makinde ◽  
Ayobami Opeyemi Eyitayo

The feasibility of partially replacing wheat flour with coconut flour in baked products was investigated. Matured coconut (Cocos nucifera) endocarp was grated for the extraction of milk, dried, milled,and pulverized. Five blends of composite flour were prepared by combining wheat flour with 10% to 50% of partially defatted coconut flour,respectively. The 100% wheat flour served as control. The samples were analysed for proximate, mineral, functional,and pasting properties using standard procedures. The proximate analysis indicated 5.52 % moisture, 23.6% protein, 11.14% fibre, 5.4% fat, 5.21% ash,and 49.1% carbohydrate for coconut flour. The ranges of the proximate composition forthe flour blends were:moisture (4.79-5.55%), protein (14.9 -19.1%), fibre (0.44 -5.12%), fat (2.9 -5.3%), ash (0.68-2.13%), carbohydrate (62.7-76.2%),and energy (315.26-335.28 kCal). The values for moisture, protein, fat, fibre,and ash increased with the increasing levels of coconut substitution,except for carbohydrate and energy contents. There were significant differences (p≤0.05) in calcium, magnesium, potassium, phosphorus, iron,and zinc concentrations of the samples. The range of values obtained for these parameters was1.32-2.59 mg/kg, 2.60-3.83 mg/kg, 12.10-16.89 mg/kg, 12.40-18.50 mg/kg,0.50-1.22 mg/kg and 0.30-1.23 mg/kg, respectively. The ranges of functional properties were:loosed bulk density (0.28-0.49 g/mL),packed bulk density (0.44-0.75 g/mL), pH (5.77-6.57), swelling capacity (3.89-6.56%), water absorption capacity (0.89-3.97 ml/g),oil absorption capacity (1.26-3.20 ml/g),and gelation (12.0-18.0%). The pasting characteristics showed significant differences betweenthe100% wheat flour and coconut substituted samples. The results revealed modifications in nutritional, functional,and pasting properties in blends containing fractions of partially defatted coconut flour,which suggeststheir application in diverse food products.


2011 ◽  
Vol 34 (2) ◽  
pp. 1327-1331 ◽  
Author(s):  
L. Garófalo ◽  
D. Vazquez ◽  
F. Ferreira ◽  
S. Soule

2017 ◽  
Vol 256 ◽  
pp. S71 ◽  
Author(s):  
Georgiana Gabriela Codina ◽  
Dumitru Zaharia ◽  
Sorina Ropciuc ◽  
Adriana Dabija

2021 ◽  
Vol 845 (1) ◽  
pp. 012135
Author(s):  
E P Meleshkina ◽  
S N Kolomiets ◽  
O I Bundina ◽  
A S Cheskidova

Abstract Due to the constantly growing demand for flour confectionery and culinary products, it became necessary to develop specialized requirements for the quality of wheat flour as a raw material. To date, there are no such requirements in our country, and for the production of these products, bakery flour obtained according to the traditional wheat grind scheme was used, the quality of which had to be leveled depending on the range of confectionery products. One way to solve this problem is to differentiate the properties of wheat flour according to its intended purpose and their rationing. The purpose of the study is to develop quality requirements for Russian wheat flour for the production of wafer sheets according to objectively and reliably determined indicators of the dough rheological properties using an alveograph device to create, in the future, a system for classifying wheat flour by its intended purpose. Flour quality assessment was carried out using domestic devices and laboratory equipment (MOK system, Falling-number value, etc.); the dough rheological properties were evaluated by an alveograph device (company Chopin, France), wafer sheets were baked and evaluated using methods previously developed by the authors. The analysis of the interdependence of standardized quality indicators, as well as newly developed ones, was conducted to identify indicators that differentiate the quality of wheat flour by its intended purpose, i.e. by finished products. For this, methods of mathematical statistics were applied.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Abiodun Adekunle Olapade ◽  
Mary Abimbola Adeyemo

Cassava (Manihot esculenta Crantz) and cowpea (Vigna unguiculata L. Walp) were processed into flours and used to substitute wheat flour for preparation of cookies. The chemical, including proximate composition and anti-nutritional factors, and functional and pasting properties of the blends were determined. Cookies were produced from the blends with 100% wheat flour as a control. The anti-nutritional factors, physical properties and organoleptic attributes of the cookies were evaluated. An increase in the level of cassava flour substitution resulted in a decrease in the protein content of the composite flour. However, addition of cowpea flour resulted in an increase in the protein content. There were significant (p<0.05) reductions in the studied anti-nutritional factors after baking. Cookies from composite flours were not significantly (p>0.05) different from the control in overall acceptability. This indicates the feasibility of producing nutritious cookies with desirable organoleptic qualities from cassava, wheat and cowpea composite flour.


Sign in / Sign up

Export Citation Format

Share Document