scholarly journals Dynamically Subarray-Connected Hybrid Precoding Scheme for Multiuser Millimeter-Wave Massive MIMO Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guangyan Liao ◽  
Feng Zhao

Hybrid precoding is widely used in millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems. However, most prior work on hybrid precoding focused on the fully connected hybrid architectures and the subconnected but fixed architectures in which each radio frequency (RF) chain is connected to a specific subset of the antennas. The limited work shows that dynamic subarray architectures address the tradeoff between achievable spectral efficiency and energy efficiency of mmWave massive MIMO systems. Nevertheless, in the multiuser hybrid precoding systems, the existing dynamic subarray schemes ignore the fairness of users and the problem of user selection. In this paper, we propose a novel multiuser hybrid precoding scheme for dynamic subarray architectures. Firstly, we select a multiuser set among all users according to the analog effective channel information of the base station (BS) and then design the subset of the antennas to each RF by the fairness antenna-partitioning algorithm. Finally, the optimal analog precoding vector is designed according to each subarray, and the digital precoding is designed by the minimum mean-squared error (MMSE) criterion. The simulation results show that the performance advantages of the proposed multiuser hybrid precoding scheme for dynamic subarray architectures.

2021 ◽  
Vol 42 (2) ◽  
pp. 209
Author(s):  
Jean Marcel Faria Tonin ◽  
Taufik Abrao

Detection in multiple-input-multiple-output (MIMO) wireless communication systems is a crucial procedure in receivers since the multiple access transmission schemes generate interference due to the simultaneous transmission along with the several antennas, unlike single-input-single-output (SISO) transmission schemes. Precoding is a technique in MIMO systems used to mitigate the effects of the channel over the received signal. Hence, it is possible to adjust continuously the transmitted information to reverse the effect of the wireless channel at the receiver side. In this work, linear sub-optimal detectors and precoders for massive MIMO (M-MIMO) systems are implemented, analyzed, and compared in terms of performance-complexity trade-off. It is also being considered numerical results in both channel scenarios: a) receiver and transmitter have perfect channel state information (CSI); b) complex channel coefficients are estimated with different levels of inaccuracy. Monte-Carlo simulations (MCS) reveal that linear zero-forcing (ZF) and minimum mean squared error (MMSE) massive MIMO detectors result in a certain robustness against multi-user interference when operating under low and medium system loading, L = K/M, thanks to the favourable propagation phenomenon arising in massive MIMO systems.


2022 ◽  
Author(s):  
Chen Wei ◽  
Kui Xu ◽  
Zhexian Shen ◽  
Xiaochen Xia ◽  
Wei Xie ◽  
...  

Abstract In this paper, we investigate the uplink transmission for user-centric cell-free massive multiple-input multiple-output (MIMO) systems. The largest-large-scale-fading-based access point (AP) selection method is adopted to achieve a user-centric operation. Under this user-centric framework, we propose a novel inter-cluster interference-based (IC-IB) pilot assignment scheme to alleviate pilot contamination. Considering the local characteristics of channel estimates and statistics, we propose a location-aided distributed uplink combining scheme based on a novel proposed metric representing inter-user interference to balance the relationship among the spectral efficiency (SE), user equipment (UE) fairness and complexity, in which the normalized local partial minimum mean-squared error (LP-MMSE) combining is adopted for some APs, while the normalized maximum ratio (MR) combining is adopted for the remaining APs. A new closed-form SE expression using the normalized MR combining is derived and a novel metric to indicate the UE fairness is also proposed. Moreover, the max-min fairness (MMF) power control algorithm is utilized to further ensure uniformly good service to the UEs. Simulation results demonstrate that the channel estimation accuracy of our proposed IC-IB pilot assignment scheme outperforms that of the conventional pilot assignment schemes. Furthermore, although the proposed location-aided uplink combining scheme is not always the best in terms of the per-UE SE, it can provide the more fairness among UEs and can achieve a good trade-off between the average SE and computational complexity.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 164 ◽  
Author(s):  
Zahra Mokhtari ◽  
Maryam Sabbaghian ◽  
Rui Dinis

Massive multiple input multiple output (MIMO) technology is one of the promising technologies for fifth generation (5G) cellular communications. In this technology, each cell has a base station (BS) with a large number of antennas, allowing the simultaneous use of the same resources (e.g., frequency and/or time slots) by multiple users of a cell. Therefore, massive MIMO systems can bring very high spectral and power efficiencies. However, this technology faces some important issues that need to be addressed. One of these issues is the performance degradation due to hardware impairments, since low-cost RF chains need to be employed. Another issue is the channel estimation and channel aging effects, especially in fast mobility environments. In this paper we will perform a comprehensive study on these two issues considering two of the most promising candidate waveforms for massive MIMO systems: Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain processing (SC-FDP). The studies and the results show that hardware impairments and inaccurate channel knowledge can degrade the performance of massive MIMO systems extensively. However, using suitable low complex estimation and compensation techniques and also selecting a suitable waveform can reduce these effects.


2021 ◽  
Author(s):  
Xiaoming Dai ◽  
Tiantian Yan ◽  
Yuanyuan Dong ◽  
Yuquan Luo ◽  
Hua Li

Abstract We introduce a joint weighted Neumann series (WNS) and Gauss-Seidel (GS) approach to implement an approximated linear minimum mean-squared error (LMMSE) detector for uplink massive multiple-input multiple-output (M-MIMO) systems. We first propose to initialize the GS iteration by a WNS method, which produces a closer-to-LMMSE initial solution than the conventional zero vector and diagonal-matrix based scheme. Then the GS algorithm is applied to implement an approximated LMMSE detection iteratively. Furthermore, based on the WNS, we devise a low-complexity approximate log-likelihood ratios (LLRs) computation method whose performance loss is negligible compared with the exact method. Numerical results illustrate that the proposed joint WNS-GS approach outperforms the conventional method and achieves near-LMMSE performance with significantly lower computational complexity.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 927 ◽  
Author(s):  
Alemaishat ◽  
Saraereh ◽  
Khan ◽  
Affes ◽  
Li ◽  
...  

Aiming at the problem of high computational complexity due to a large number of antennas deployed in mmWave massive multiple-input multiple-output (MIMO) communication systems, this paper proposes an efficient algorithm for optimizing beam control vectors with low computational complexity based on codebooks for millimeter-wave massive MIMO systems with split sub-arrays hybrid beamforming architecture. A bidirectional method is adopted on the beam control vector of each antenna sub-array both at the transmitter and receiver, which utilizes the idea of interference alignment (IA) and alternating optimization. The simulation results show that the proposed algorithm has low computational complexity, fast convergence, and improved spectral efficiency as compared with the state-of-the-art algorithms.


2019 ◽  
Vol 4 (9) ◽  
pp. 207-211
Author(s):  
Ibukunoluwa Adetutu Adebanjo ◽  
Yekeen Olajide Olasoji ◽  
Micheal Olorunfunmi Kolawole

As we are entering the 5G era, high demand is made of wireless communication. Consistent effort has been ongoing in multiple-input multiple-output (MIMO) systems, which provide correlation on temporal and spatial domain, to meet the high throughput demand. To handle the characteristic nature of wireless channel effectively and improve the system performance, this paper considers the combination of diversity and equalization. Space-Time trellis code is combined with single-carrier modulation using two-choice equalization techniques, namely: minimum mean squared error (MMSE) equalizer and orthogonal triangular (QR) detection. MMSE gives an optimal balance between noise enhancement and net inter-symbol interference (ISI) in the transmitted signal. Use of these equalizers provides the platform of investigating the bit error rate (BER) and the pairwise error probability (PEP) at the receiver, as well as the effect of cyclic prefix reduction on the receivers. It was found that the MMSE receiver outperforms the QR receiver in terms of BER, while in terms of PEP; the QR receiver outperforms the MMSE receiver. When a cyclic prefix reduction test was carried out on both receivers, it yields a significant reduction in BER of both receivers but has no significant effect on the overall performance.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 301
Author(s):  
Jianhe Du ◽  
Jiaqi Li ◽  
Jing He ◽  
Yalin Guan ◽  
Heyun Lin

For multi-user millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the precise acquisition of channel state information (CSI) is a huge challenge. With the increase of the number of antennas at the base station (BS), the traditional channel estimation techniques encounter the problems of pilot training overhead and computational complexity increasing dramatically. In this paper, we develop a step-length optimization-based joint iterative scheme for multi-user mmWave massive MIMO systems to improve channel estimation performance. The proposed estimation algorithm provides the BS with full knowledge of all channel parameters involved in up- and down-links. Compared with existing algorithms, the proposed algorithm has higher channel estimation accuracy with low complexity. Moreover, the proposed scheme performs well even with a small number of training sequences and a large number of users. Simulation results are shown to demonstrate the performance of the proposed channel estimation algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 575 ◽  
Author(s):  
Roberto Magueta ◽  
Daniel Castanheira ◽  
Pedro Pedrosa ◽  
Adão Silva ◽  
Rui Dinis ◽  
...  

Most of the previous work on hybrid transmit and receive beamforming focused on narrowband channels. Because the millimeter wave channels are expected to be wideband, it is crucial to propose efficient solutions for frequency-selective channels. In this regard, this paper proposes an iterative analog–digital multi-user equalizer scheme for the uplink of wideband millimeter-wave massive multiple-input-multiple-output (MIMO) systems. By iterative equalizer we mean that both analog and digital parts are updated using as input the estimates obtained at the previous iteration. The proposed iterative analog–digital multi-user equalizer is designed by minimizing the sum of the mean square error of the data estimates over the subcarriers. We assume that the analog part is fixed for all subcarriers while the digital part is computed on a per subcarrier basis. Due to the complexity of the resulting optimization problem, a sequential approach is proposed to compute the analog phase shifters values for each radio frequency (RF) chain. We also derive an accurate, semi-analytical approach for obtaining the bit error rate (BER) of the proposed hybrid system. The proposed solution is compared with other hybrid equalizer schemes, recently designed for wideband millimeter-wave (mmWave) massive MIMO systems. The simulation results show that the performance of the developed analog–digital multi-user equalizer is close to full-digital counterpart and outperforms the previous hybrid approach.


2007 ◽  
Vol 20 (1) ◽  
pp. 45-55
Author(s):  
Veljko Stankovic

In this paper we introduce a novel linear preceding technique. It was previously reported in the literature that when the user terminals are equipped with one antenna, minimum mean-squared-error (MMSE) in combination with successive interference cancellation is optimum on the uplink, while MMSE preceding in combination with Tomlinson-Harashima preceding (THP) is optimum on the downlink. The linear preceding technique introduced in this paper is based on the modified MSB criterion. It can serve the users that are equipped with arbitrary number of antennas with only limitation that the total number of users in the system has to be less than or equal to the rank of the combined multiple-input multiple-output (MIMO) channel matrix of all users. It was shown in the simulations that it extracts very high diversity gain and at low signal-to-noise ratios, when the total number of antennas at the user terminals is greater than the number of antennas at the base station, it approaches the maximum sum rate capacity of the broadcast channel. The technique introduced in this paper is favorable for practical implementation since it requires by an order of magnitude less operations than the techniques based on the singular value decomposition.


2021 ◽  
Author(s):  
Rajashekhar Myadar ◽  
M. Vanidevi

Abstract Massive MIMO (multiple input multiple output) systems are best suitable for mmWave communications improving throughput and spectral efficiency in 5G. Beamforming is a wireless technique adopted by massive MIMO and used in 4G & 5G to increase the directivity and energy efficiency by focusing the signal in specific direction supporting only single user transmission with one data stream. Precoding is a generalized form of beamforming to support multi-stream transmission in multi-antenna wireless communication, such that combination of analog and digital precoding forms the hybrid precoding which shows good performance with less complexity. Successive Interference Cancelation (SIC) is a technique in which optimization of different antenna arrays will be done one by one such that while optimizing the capacity of specific array contribution of earlier optimized array is removed from the total capacity and precoder of that specific optimizing array will be computed. In this paper we have designed the SIC based hybrid precoding using sub-connected and fully-connected structures for multi-user (MU) case and compared them with the optimal precoding for mmWave massive MIMO systems in a 3D scenario, where both azimuth and elevation angles are taken into account in the channel. The proposed algorithms are simulated in the MATLAB and compared their performance with different parameters and shown that SIC-based scheme is near-optimal for multi-user case.


Sign in / Sign up

Export Citation Format

Share Document