scholarly journals Green Communication for Next-Generation Wireless Systems: Optimization Strategies, Challenges, Solutions, and Future Aspects

2021 ◽  
Vol 2021 ◽  
pp. 1-38
Author(s):  
Rajkumar Singh Rathore ◽  
Suman Sangwan ◽  
Omprakash Kaiwartya ◽  
Geetika Aggarwal

Wireless sensor networks (WSNs) have emerged as a backbone technology for the wireless communication era. The demand for WSN is rapidly increasing due to their major role in various applications with a wider deployment and omnipresent nature. The WSN is rapidly integrated into a large number of applications such as industrial, security, monitoring, tracking, and applications in home automation. The widespread use in many different areas attracts research interest in WSNs. Therefore, researchers are taking initiatives in exploring innovation day by day particularly towards the Internet of Things (IoT). But, WSN is having lots of challenging issues that need to be addressed, and the inherent characteristics of WSN severely affect the performance. Energy constraints are one of the primary issues that require urgent attention from the research community. Optimal energy optimization strategies are needed to counter the issue of energy constraints. Although one of the most appropriate schemes for handling energy constraints issues is the appropriate energy harvesting technique, the optimal energy optimization strategies should be coupled together for effectively utilizing the harvested energy. In this high-level systematic and taxonomical survey, we have organized the energy optimization strategies for EH-WSNs into eleven factors, namely, radio optimization schemes, optimizing the energy harvesting process, data reduction schemes, schemes based on cross-layer optimization, schemes based on cross-layer optimization, sleep/wake-up policies, schemes based on load balancing, schemes based on optimization of power requirement, optimization of communication mechanism, schemes based on optimization of battery operations, mobility-based schemes, and finally energy balancing schemes. We have also prepared the summarized view of various protocols/algorithms with their remarkable details. This systematic and taxonomy survey also provides a progressive detailed overview and classification of various optimization challenges for the EH-WSNs that require attention from the researcher followed by a survey of corresponding solutions for corresponding optimization issues. Further, this systematic and taxonomical survey also provides a deep analysis of various emerging energy harvesting technologies in the last twenty years of the era.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Qinghai Gao ◽  
Junshan Zhang ◽  
Xuemin (Sherman) Shen ◽  
Bryan Larish

We take a cross-layer optimization approach to study energy efficient data transport in coalition-based wireless sensor networks, where neighboring nodes are organized into groups to form coalitions and sensor nodes within one coalition carry out cooperative communications. In particular, we investigate two network models: (1) many-to-one sensor networks where data from one coalition are transmitted to the sink directly, and (2) multihop sensor networks where data are transported by intermediate nodes to reach the sink. For the many-to-one network model, we propose three schemes for data transmission from a coalition to the sink. In scheme 1, one node in the coalition is selected randomly to transmit the data; in scheme 2, the node with the best channel condition in the coalition transmits the data; and in scheme 3, all the nodes in the coalition transmit in a cooperative manner. Next, we investigate energy balancing with cooperative data transport in multihop sensor networks. Built on the above coalition-aided data transmission schemes, the optimal coalition planning is then carried out in multihop networks, in the sense that unequal coalition sizes are applied to minimize the difference of energy consumption among sensor nodes. Numerical analysis reveals that energy efficiency can be improved significantly by the coalition-aided transmission schemes, and that energy balancing across the sensor nodes can be achieved with the proposed coalition structures.



Author(s):  
SETHI ANITA ◽  
VIJAY SANDIP ◽  
KUMAR RAKESH ◽  
◽  
◽  
...  




Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3512 ◽  
Author(s):  
Corina Covaci ◽  
Aurel Gontean

The goal of this paper is to review current methods of energy harvesting, while focusing on piezoelectric energy harvesting. The piezoelectric energy harvesting technique is based on the materials’ property of generating an electric field when a mechanical force is applied. This phenomenon is known as the direct piezoelectric effect. Piezoelectric transducers can be of different shapes and materials, making them suitable for a multitude of applications. To optimize the use of piezoelectric devices in applications, a model is needed to observe the behavior in the time and frequency domain. In addition to different aspects of piezoelectric modeling, this paper also presents several circuits used to maximize the energy harvested.



Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.



Sign in / Sign up

Export Citation Format

Share Document