scholarly journals A New Model for Predicting Rate of Penetration Using an Artificial Neural Network

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2058 ◽  
Author(s):  
Salaheldin Elkatatny ◽  
Ahmed Al-AbdulJabbar ◽  
Khaled Abdelgawad

The drilling rate of penetration (ROP) is defined as the speed of drilling through rock under the bit. ROP is affected by different interconnected factors, which makes it very difficult to infer the mutual effect of each individual parameter. A robust ROP is required to understand the complexity of the drilling process. Therefore, an artificial neural network (ANN) is used to predict ROP and capture the effect of the changes in the drilling parameters. Field data (4525 points) from three vertical onshore wells drilled in the same formation using the same conventional bottom hole assembly were used to train, test, and validate the ANN model. Data from Well A (1528 points) were utilized to train and test the model with a 70/30 data ratio. Data from Well B and Well C were used to test the model. An empirical equation was derived based on the weights and biases of the optimized ANN model and compared with four ROP models using the data set of Well C. The developed ANN model accurately predicted the ROP with a correlation coefficient (R) of 0.94 and an average absolute percentage error (AAPE) of 8.6%. The developed ANN model outperformed four existing models with the lowest AAPE and highest R value.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Guo-zheng Quan ◽  
Chun-tang Yu ◽  
Ying-ying Liu ◽  
Yu-feng Xia

The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former,Rand AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possessesη-values within±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model.


Author(s):  
Wan Nazirah Wan Md Adnan ◽  
Nofri Yenita Dahlan ◽  
Ismail Musirin

In this work, baseline energy model development using Artificial Neural Network (ANN) with resampling techniques; Cross Validation (CV) and Bootstrap (BS) are presented. Resampling techniques are used to examine the ability of the ANN model to deal with a small dataset. Working days, class days and Cooling Degree Days (CDD) are used as ANN input meanwhile the ANN output is monthly electricity consumption. The coefficient of correlation (R) is used as performance function to evaluate the model accuracy. For this analysis, R is calculated for the entire data set (R_all) and separately for training set (R_train), validation set (R_valid) dan testing set (R_test). The closer R to 1, the higher similarities between targeted and predicted output. The total of two different models with several number of neurons are developed and compared. It can be concluded that all models are capable to train the network. Artificial Neural Network with Bootstrap Cross Validation technique (ANN-BSCV) outperforms Artificial Neural Network with Cross Validation technique (ANN-CV).  The 3-6-1 ANN-BSCV, with R_train = 0.95668, R_valid = 0.97553, R_test = 0.85726 and R_all = 0.94079 is selected as the baseline energy model to predict energy consumption for Option C IPMVP.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Şükrü Özşahin ◽  
Hilal Singer

In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for the wood industry to predict the gloss with less number of tiring experimental activities.


2014 ◽  
Vol 7 (4) ◽  
pp. 132-143
Author(s):  
ABBAS M. ABD ◽  
SAAD SH. SAMMEN

The prediction of different hydrological phenomenon (or system) plays an increasing role in the management of water resources. As engineers; it is required to predict the component of natural reservoirs’ inflow for numerous purposes. Resulting prediction techniques vary with the potential purpose, characteristics, and documented data. The best prediction method is of interest of experts to overcome the uncertainty, because the most hydrological parameters are subjected to the uncertainty. Artificial Neural Network (ANN) approach has adopted in this paper to predict Hemren reservoir inflow. Available data including monthly discharge supplied from DerbendiKhan reservoir and rain fall intensity falling on the intermediate catchment area between Hemren-DerbendiKhan dams were used.A Back Propagation (LMBP) algorithm (Levenberg-Marquardt) has been utilized to construct the ANN models. For the developed ANN model, different networks with different numbers of neurons and layers were evaluated. A total of 24 years of historical data for interval from 1980 to 2004 were used to train and test the networks. The optimum ANN network with 3 inputs, 40 neurons in both two hidden layers and one output was selected. Mean Squared Error (MSE) and the Correlation Coefficient (CC) were employed to evaluate the accuracy of the proposed model. The network was trained and converged at MSE = 0.027 by using training data subjected to early stopping approach. The network could forecast the testing data set with the accuracy of MSE = 0.031. Training and testing process showed the correlation coefficient of 0.97 and 0.77 respectively and this is refer to a high precision of that prediction technique.


2021 ◽  
Vol 75 (5) ◽  
pp. 277-283
Author(s):  
Jelena Lubura ◽  
Predrag Kojic ◽  
Jelena Pavlicevic ◽  
Bojana Ikonic ◽  
Radovan Omorjan ◽  
...  

Determination of rubber rheological properties is indispensable in order to conduct efficient vulcanization process in rubber industry. The main goal of this study was development of an advanced artificial neural network (ANN) for quick and accurate vulcanization data prediction of commercially available rubber gum for tire production. The ANN was developed by using the platform for large-scale machine learning TensorFlow with the Sequential Keras-Dense layer model, in a Python framework. The ANN was trained and validated on previously determined experimental data of torque on time at five different temperatures, in the range from 140 to 180 oC, with a step of 10 oC. The activation functions, ReLU, Sigmoid and Softplus, were used to minimize error, where the ANN model with Softplus showed the most accurate predictions. Numbers of neurons and layers were varied, where the ANN with two layers and 20 neurons in each layer showed the most valid results. The proposed ANN was trained at temperatures of 140, 160 and 180 oC and used to predict the torque dependence on time for two test temperatures (150 and 170 oC). The obtained solutions were confirmed as accurate predictions, showing the mean absolute percentage error (MAPE) and mean squared error (MSE) values were less than 1.99 % and 0.032 dN2 m2, respectively.


2020 ◽  
pp. 1051-1062
Author(s):  
Zaher JabbarAttwan AL Zirej ◽  
Hassan Abdul Hadi

The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).      An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.      The proposed artificial neural network method depends on obtaining the input data from drilling mud logging data and wireline logging data. The data then analyzes it to create an interconnection between the drilling variables and the rate of penetration.      The proposed ANN model consists of an input layer, hidden layer and outputs layer, while it applies the tangent function (TanH) as a learning and training algorithm in the hidden layer. Finally, the predicted values of ROP are compared with the measured values. The proposed ANN model is more efficient than the multiple regression analysis in predicting ROP. The obtained coefficient of determination (R2) values using the ANN technique are 0.93 and 0.91 for training and validation sets, respectively. This study presents a new model for predicting ROP values in comparison with other conventional drilling measurements.


2020 ◽  
Vol 69 (11-12) ◽  
pp. 595-602
Author(s):  
Hichem Tahraoui ◽  
Abd Elmouneïm Belhadj ◽  
Adhya Eddine Hamitouche

The region of Médéa (Algeria) located in an agricultural site requires a large amount of drinking water. For this purpose, the water analyses in question are imperative. To examine the evolution of the drinking water quality in this region, firstly, an experimental protocol was done in order to obtain a dataset by taking into account several physicochemical parameters. Secondly, the obtained data set was divided into two parts to form the artificial neural network, where 70 % of the data set was used for training, and the remaining 30 % was also divided into two equal parts: one for testing and the other for validation of the model. The intelligent model obtained was evaluated as a function of the correlation coefficient nearest to 1 and lowest mean square error (RMSE). A set of 84 data points were used in this study. Eighteen parameters in the input layer, five neurons in the hidden layer, and one parameter in the output layer were used for the ANN modelling. Levenberg Marquardt learning (LM) algorithm, logarithmic sigmoid, and linear transfer function were used, respectively, for the hidden and the output layers. The results obtained during the present study showed a correlation coefficient of <i>R</i> = 0.99276 with root mean square error RMSE = 11.52613 mg dm<sup>–3</sup>. These results show that obtained ANN model gave far better and more significant results. It is obviously more accurate since its relative error is small with a correlation coefficient close to unity. Finally, it can be concluded that obtained model can effectively predict the rate of soluble bicarbonate in drinking water in the Médéa region.


2011 ◽  
Vol 76 (7) ◽  
pp. 1003-1014 ◽  
Author(s):  
Mohammad Fatemi ◽  
Zahra Ghorbannezhad

Quantitative structure-activity relationship (QSAR) approaches were used to estimate the volume of distribution (Vd) using an artificial neural network (ANN). The data set consisted of the volume of distribution of 129 pharmacologically important compounds, i.e., benzodiazepines, barbiturates, NSAIDs, tricyclic anti-depressants and some antibiotics, such as betalactams, tetracyclines and quinolones. The descriptors, which were selected by stepwise variable selection methods, were: the Moriguchi octanol-water partition coefficient; the 3D-MoRSEsignal 30, weighted by atomic van der Waals volumes; the fragmentbased polar surface area; the d COMMA2 value, weighted by atomic masses; the Geary autocorrelation, weighted by the atomic Sanderson electronegativities; the 3D-MoRSE - signal 02, weighted by atomic masses, and the Geary autocorrelation - lag 5, weighted by the atomic van der Waals volumes. These descriptors were used as inputs for developing multiple linear regressions (MLR) and artificial neural network models as linear and non-linear feature mapping techniques, respectively. The standard errors in the estimation of Vd by the MLR model were: 0.104, 0.103 and 0.076 and for the ANN model: 0.029, 0.087 and 0.082 for the training, internal and external validation test, respectively. The robustness of these models were also evaluated by the leave-5-out cross validation procedure, that gives the statistics Q2 = 0.72 for the MLR model and Q2 = 0.82 for the ANN model. Moreover, the results of the Y-randomization test revealed that there were no chance correlations among the data matrix. In conclusion, the results of this study indicate the applicability of the estimation of the Vd value of drugs from their structural molecular descriptors. Furthermore, the statistics of the developed models indicate the superiority of the ANN over the MLR model.


2010 ◽  
Vol 168-170 ◽  
pp. 1730-1734
Author(s):  
Fang Xian Li ◽  
Qi Jun Yu ◽  
Jiang Xiong Wei ◽  
Jian Xin Li

An artificial neural network (ANN) is presented to predict the workability of self compacting concrete (SCC) containing slump, slump flow and V-test. A data set of a laboratory work, in which a total of 23 concretes were produced, was utilized in the ANNs study. ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of six input parameters that cover the cement, fly ash, blast furnace slag, super plasticizer, sand ratio and water/binder, three output parameters which are slump, slump flow and V-test of SCC. ANN-1, ANN-2 and ANN-3 models which containing 15 ,11 and 5 neurons in the hidden layers, respectively are found to predict workability of concrete well within the ranges of the input parameters considered. The three models are tested by comparing to the results to actual measured data. The results showed that ANN-2 is the best suitable for predicting the workability of SCC using concrete ingredients as input parameters.


Author(s):  
Ramesh Kumar V ◽  
Pradipkumar Dixit

The paper presents an Artificial Neural Network (ANN) model for short-term load forecasting of daily peak load. A multi-layered feed forward neural network with Levenberg-Marquardt learning algorithm is used because of its good generalizing property and robustness in prediction. The input to the network is in terms of historical daily peak load data and corresponding daily peak temperature data. The network is trained to predict the load requirement ahead. The effectiveness of the proposed ANN approach to the short-term load forecasting problems is demonstrated by practical data from the Bangalore Electricity Supply Company Limited (BESCOM). The comparison between the proposed and the conventional methods is made in terms of percentage error and it is found that the proposed ANN model gives more accurate predictions with optimal number of neurons in the hidden layer.


Sign in / Sign up

Export Citation Format

Share Document