Machine learning-based prediction of component self-alignment in vapour phase and infrared soldering

2019 ◽  
Vol 31 (3) ◽  
pp. 163-168 ◽  
Author(s):  
Oliver Krammer ◽  
Péter Martinek ◽  
Balazs Illes ◽  
László Jakab

Purpose This paper aims to investigate the self-alignment of 0603 size (1.5 × 0.75 mm) chip resistors, which were soldered by infrared or vapour phase soldering. The results were used for establishing an artificial neural network for predicting the component movement during the soldering. Design/methodology/approach The components were soldered onto an FR4 testboard, which was designed to facilitate the measuring of the position of the components both prior to and after the soldering. A semi-automatic placement machine misplaced the components intentionally, and the self-alignment ability was determined for soldering techniques of both infrared and vapour phase soldering. An artificial neural network-based prediction method was established, which is able to predict the position of chip resistors after soldering as a function of component misplacement prior to soldering. Findings The results showed that the component can self-align from farer distances by using vapour phase method, even from relative misplacement of 50 per cent parallel to the shorter side of the component. Components can self-align from a relative misplacement only of 30 per cent by using infrared soldering method. The established artificial neural network can predict the component self-alignment with an approximately 10-20 per cent mean absolute error. Originality/value It was proven that the vapour phase soldering method is more stable from the component’s self-alignment point of view. Furthermore, machine learning-based predictors can be applied in the field of reflow soldering technology, and artificial neural networks can predict the component self-alignment with an appropriately low error.

2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Himanshu Goel ◽  
Narinder Pal Singh

Purpose Artificial neural network (ANN) is a powerful technique to forecast the time series data such as the stock market. Therefore, this study aims to predict the Indian stock market closing price using ANNs. Design/methodology/approach The input variables identified from the literature are some macroeconomic variables and a global stock market factor. The study uses an ANN with Scaled Conjugate Gradient Algorithm (SCG) to forecast the Bombay Stock Exchange (BSE) Sensex. Findings The empirical findings reveal that the ANN model is able to achieve 93% accuracy in predicting the BSE Sensex closing prices. Moreover, the results indicate that the Morgan Stanley Capital International world index is the most important variable and the index of industrial production is the least important in predicting Sensex. Research limitations/implications The findings of the study have implications for the investors of all categories such as foreign institutional investors, domestic institutional investors and investment houses. Originality/value The novelty of this study lies in the fact that there are hardly any studies that use ANN to forecast the Indian stock market using macroeconomic indicators.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ching-Hsiang Chen ◽  
Chien-Yi Huang ◽  
Yan-Ci Huang

Purpose The purpose of this study is to use the Taguchi Method for parametric design in the early stages of product development. electromagnetic compatibility (EMC) issues can be considered in the early stages of product design to reduce counter-measure components, product cost and labor consumption increases due to a number of design changes in the R&D cycle and to accelerate the R&D process. Design/methodology/approach The three EMC characteristics, including radiated emission, conducted emission and fast transient impulse immunity of power, are considered response values; control factors are determined with respect to the relevant parameters for printed circuit board and mechanical design of the product and peripheral devices used in conjunction with the product are considered as noise factors. The optimal parameter set is determined by using the principal component gray relational analysis in conjunction with both response surface methodology and artificial neural network. Findings Market specifications and cost of components are considered to propose an optimal parameter design set with the number of grounded screw holes being 14, the size of the shell heat dissipation holes being 3 mm and the arrangement angle of shell heat dissipation holes being 45 degrees, to dispose of 390 O filters on the noise source. Originality/value The optimal parameter set can improve EMC effectively to accommodate the design specifications required by customers and pass test regulations.


2017 ◽  
Vol 11 (4) ◽  
pp. 522-540 ◽  
Author(s):  
Isham Alzoubi ◽  
Mahmoud Delavar ◽  
Farhad Mirzaei ◽  
Babak Nadjar Arrabi

Purpose This work aims to determine the best linear model using an artificial neural network (ANN) with the imperialist competitive algorithm (ICA-ANN) and ANN to predict the energy consumption for land leveling. Design/methodology/approach Using ANN, integrating artificial neural network and imperialist competitive algorithm (ICA-ANN) and sensitivity analysis (SA) can lead to a noticeable improvement in the environment. In this research, effects of various soil properties such as embankment volume, soil compressibility factor, specific gravity, moisture content, slope, sand per cent and soil swelling index on energy consumption were investigated. Findings According to the results, 10-8-3-1, 10-8-2-5-1, 10-5-8-10-1 and 10-6-4-1 multilayer perceptron network structures were chosen as the best arrangements and were trained using the Levenberg–Marquardt method as the network training function. Sensitivity analysis revealed that only three variables, namely, density, soil compressibility factor and cut-fill volume (V), had the highest sensitivity on the output parameters, including labor energy, fuel energy, total machinery cost and total machinery energy. Based on the results, ICA-ANN had a better performance in the prediction of output parameters in comparison with conventional methods such as ANN or particle swarm optimization (PSO)-ANN. Statistical factors of root mean square error (RMSE) and correlation coefficient (R2) illustrate the superiority of ICA-ANN over other methods by values of about 0.02 and 0.99, respectively. Originality/value A limited number of research studies related to energy consumption in land leveling have been done on energy as a function of volume of excavation and embankment. However, in this research, energy and cost of land leveling are shown to be functions of all the properties of the land, including the slope, coefficient of swelling, density of the soil, soil moisture and special weight dirt. Therefore, the authors believe that this paper contains new and significant information adequate for justifying publication in an international journal.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tuan Vu Dinh ◽  
Hieu Nguyen ◽  
Xuan-Linh Tran ◽  
Nhat-Duc Hoang

Soil erosion induced by rainfall is a critical problem in many regions in the world, particularly in tropical areas where the annual rainfall amount often exceeds 2000 mm. Predicting soil erosion is a challenging task, subjecting to variation of soil characteristics, slope, vegetation cover, land management, and weather condition. Conventional models based on the mechanism of soil erosion processes generally provide good results but are time-consuming due to calibration and validation. The goal of this study is to develop a machine learning model based on support vector machine (SVM) for soil erosion prediction. The SVM serves as the main prediction machinery establishing a nonlinear function that maps considered influencing factors to accurate predictions. In addition, in order to improve the accuracy of the model, the history-based adaptive differential evolution with linear population size reduction and population-wide inertia term (L-SHADE-PWI) is employed to find an optimal set of parameters for SVM. Thus, the proposed method, named L-SHADE-PWI-SVM, is an integration of machine learning and metaheuristic optimization. For the purpose of training and testing the method, a dataset consisting of 236 samples of soil erosion in Northwest Vietnam is collected with 10 influencing factors. The training set includes 90% of the original dataset; the rest of the dataset is reserved for assessing the generalization capability of the model. The experimental results indicate that the newly developed L-SHADE-PWI-SVM method is a competitive soil erosion predictor with superior performance statistics. Most importantly, L-SHADE-PWI-SVM can achieve a high classification accuracy rate of 92%, which is much better than that of backpropagation artificial neural network (87%) and radial basis function artificial neural network (78%).


2018 ◽  
Vol 35 (4) ◽  
pp. 1774-1787 ◽  
Author(s):  
Katayoun Behzadafshar ◽  
Fahimeh Mohebbi ◽  
Mehran Soltani Tehrani ◽  
Mahdi Hasanipanah ◽  
Omid Tabrizi

PurposeThe purpose of this paper is to propose three imperialist competitive algorithm (ICA)-based models for predicting the blast-induced ground vibrations in Shur River dam region, Iran.Design/methodology/approachFor this aim, 76 data sets were used to establish the ICA-linear, ICA-power and ICA-quadratic models. For comparison aims, artificial neural network and empirical models were also developed. Burden to spacing ratio, distance between shot points and installed seismograph, stemming, powder factor and max charge per delay were used as the models’ input, and the peak particle velocity (PPV) parameter was used as the models’ output.FindingsAfter modeling, the various statistical evaluation criteria such as coefficient of determination (R2) were applied to choose the most precise model in predicting the PPV. The results indicate the ICA-based models proposed in the present study were more acceptable and reliable than the artificial neural network and empirical models. Moreover, ICA linear model with theR2 of 0.939 was the most precise model for predicting the PPV in the present study.Originality/valueIn the present paper, the authors have proposed three novel prediction methods based on ICA to predict the PPV. In the next step, we compared the performance of the proposed ICA-based models with the artificial neural network and empirical models. The results indicated that the ICA-based models proposed in the present paper were superior in terms of high accuracy and have the capacity to generalize.


Sign in / Sign up

Export Citation Format

Share Document