scholarly journals Analysis of the Shear Capacity of Ultrahigh Performance Concrete Beams Based on the Modified Compression Field Theory

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Feng ◽  
Hongming Feng ◽  
Zhijun Zhou ◽  
Xiongwei Shi

An analysis model of the shear capacity of prestressed ultrahigh performance concrete (UHPC) beams under the combined action of bending and shearing was established in this paper based on the modified compression field theory and by considering the unique material constitutive relation of UHPC. Shear tests were performed using three prestressed UHPC-T beams with different shear-span ratios to verify the correctness of the model. The results showed that the shear-span ratio greatly influenced the shear capacity and failure modes of UHPC-T beams. Upon increasing the shear-span ratio, the failure modes of the three beams were inclined compression failure, shear compression failure, and diagonal tension failure, successively. When the shear-span ratio changed from 1.04 to 2.12, the shear bearing capacity decreased greatly; however, when the shear-span ratio changed from 2.12 to 3.19, the decrease of the shear bearing capacity was very small. In addition, the MCFT analysis model was used to analyze the experimental data, and the predicted results were in good agreement, which proved the applicability of the model. Finally, according to the existing shear test results of UHPC beams and based on the main influencing factors, a simplified formula for predicting the shear capacity of UHPC beams was obtained by fitting. Comparing the MCFT model with the results of other pieces of literature, this formula accurately predicted the shear capacity of UHPC beams. The MCFT model and the simplified formula presented in this paper provide a powerful tool for predicting the shear performance of UHPC-T beams, which will contribute to the design and analysis of UHPC-T beams.

2016 ◽  
Vol 711 ◽  
pp. 799-805
Author(s):  
Kazunori Fujikake ◽  
Amornthep Somraj

The aim of this study was to develop an analytical model to estimate the dynamic shear capacity of RC beams which may exhibit diagonal tension failure under impact and blast loadings. Thus, the modified compression field theory has been extended to dynamic loading in this study. The developed analytical model has been applied to the experimental results obtained from rapid loading tests of RC beams. As a result, the developed analytical model has been in good agreement with the experimental results.


2011 ◽  
Vol 266 ◽  
pp. 126-129 ◽  
Author(s):  
Zuo Hu Wang ◽  
Xiu Li Du ◽  
Jing Bo Liu

Five beams were tested up to failure to study the shear behavior of concrete beams prestressed with fiber reinforced polymer (FRP). Different factors were taken into consideration: the type of prestressing tendons and the shear span ratio. The shear failure modes and the influence of different factors on shear behavior were investigated in details. The test results showed that FRP prestressed beams without stirrups had two shear failure modes: diagonal compression failure and shear compression failure; the shear span ratio was the most important factor to determine the failure mode and shear capacity of the prestressed beams. The shear capacity of concrete members prestressed with FRP tendons was lower than that of concrete beams prestressed with steel cables.


2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


Sign in / Sign up

Export Citation Format

Share Document