scholarly journals Analysis of the Influence of SBS Content and Structure on the Performance of SBS/CR Composite Modified Asphalt

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yafeng Gong ◽  
Yunze Pang ◽  
Fayang Li ◽  
Weidong Jin ◽  
Haipeng Bi ◽  
...  

The performance of asphalt can be improved by adding styrene-butadiene-styrene (SBS) copolymer and crumb rubber (CR). This paper investigated the influence of the structure and content of styrene-butadiene-styrene (SBS) copolymer on the properties of SBS/CR modified asphalt (SBS/CRMA). These SBS/CRMA were prepared by mixing 90# matrix asphalt, 60 mesh CR powder, and SBS copolymers with two molecular structures, which were tested for penetration, softening point, ductility, and rheology. The complex modulus, phase angle, rutting factor, storage modulus, and dissipation modulus of SBS/CRMA were analyzed with the 64°C frequency sweep tests. The results revealed that the content and structure had significant impacts on the performances of SBS/CRMA, and the advantages of SBS polymer network structure in the modified asphalt system cannot be reflected when the amount of SBS was small. Meanwhile, the high-temperature stability, low-temperature tensile resistance, temperature sensitivity, and viscoelasticity of rubberized asphalt were further improved by adding a moderate amount of SBS copolymer. Furthermore, the properties of SBS/CRMA were better as the contents of SBS increased when the type of SBS doped was the same. The effect of modification improved by star-shaped SBS copolymer addition was more than that improved by linear SBS copolymer addition. As a conclusion, the content of 4 wt% star-shaped SBS and 20 wt% CR powder-modified 90# matrix asphalt has the best modification effect with the comparison of other groups.

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2345 ◽  
Author(s):  
Yangsheng Ye ◽  
Gang Xu ◽  
Liangwei Lou ◽  
Xianhua Chen ◽  
Degou Cai ◽  
...  

In this study, a new type of composite modified bitumen was developed by blending styrene-butadiene-styrene (SBS) and crumb rubber (CR) with a chemical method to satisfy the durability requirements of waterproofing material in the waterproofing layer of high-speed railway subgrade. A pressure-aging-vessel test for 20, 40 and 80 h were conducted to obtain bitumen samples in different long-term aging conditions. Multiple stress creep recovery (MSCR) tests, linear amplitude scanning tests and bending beam rheometer tests were conducted on three kinds of asphalt binders (SBS modified asphalt, CR modified asphalt and SBS/CR composite modified asphalt) after different long-term aging processes, including high temperature permanent deformation performance, resistance to low temperature thermal and fatigue crack. Meanwhile, aging sensitivities were compared by different rheological indices. Results showed that SBS/CR composite modified asphalt possessed the best properties before and after aging. The elastic property of CR in SBS/CR composite modified asphalt improved the ability to resist low temperature thermal and fatigue cracks at a range of low and middle temperatures. Simultaneously, the copolymer network of SBS and CR significantly improved the elastic response of the asphalt SBS/CR modified asphalt at a range of high temperatures. Furthermore, all test results indicated that the SBS/CR modified asphalt possesses the outstanding ability to anti-aging. SBS/CR is an ideal kind of asphalt to satisfy the demand of 60 years of service life in the subgrade of high speed railway.


2013 ◽  
Vol 848 ◽  
pp. 26-30
Author(s):  
Fu Qiang Dong ◽  
Wen Zhe Zhao ◽  
Yu Zhen Zhang ◽  
Hua Dong Sun ◽  
Wei Yu Fan ◽  
...  

This paper presents a laboratory study of Styrene-Butadiene-Styrene (SBS)/ crumb rubber modified asphalt by the two-step method. The conventional properties of the modified asphalt were determined. The effects of crumb rubber content and shearing time on the performance of the crumb rubber modified asphalt and composite modified asphalt. The results show that the crumb rubber contents and shearing time have significant impacts on the performance of the modified asphalt. With the crumb rubber content increasing, the high temperature performance was improved and the low temperature chanethe softening point increases and penetration decrease, and the ductility change little. It is comfortable for workability at the crumb rubber content of 20%. The viscosity is an important measurement for the workability of the modified asphalt. After adding the stabilizer, the viscosity increases until the shearing time reaching 1.5h, then it will decrease gradually.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5715
Author(s):  
Bangwei Wu ◽  
Chufan Luo ◽  
Zhaohui Pei ◽  
Chuangchuang Chen ◽  
Ji Xia ◽  
...  

A wide variety of polymer additives have been widely used in recent years. However, the effect of different polymer additives on the durability of asphalt binders has not been investigated thoroughly. To evaluate the aging property of styrene-butadiene-styrene (SBS) asphalt binder with different polymer additives, three polymer modifiers, namely high modulus modifier (HMM), anti-rutting agent (ARA), and high viscosity modifier (HVM), were added to it. First, the Thin Film Over Test (TFOT) and Pressure Aging Vessel (PAV) was performed on the asphalt binders. The rheological properties of the four asphalt binders before and after aging were then checked by the Dynamic Shear Rheometer Test (DSR). The chemical compositions of the asphalt binders were determined by the Fourier Transform Infrared Spectrometer (FTIR) test. Several aging indicators were adopted to reflect the aging degree of the asphalt binders. The results show that when polymer additives are added to the SBS asphalt binder, the complex modulus, storage modulus, loss modulus, and rutting factor substantially increase and the phase angle decreases. All the test parameters become higher after aging. The phase angle of the SBS asphalt binder is the highest at both unaged and aged states, while its other parameters values are the smallest. Moreover, the Carbonyl Aging Indicator (CAI) of SBS with polymer additives becomes lower under both TFOT and PAV conditions, indicating that polymer additives can improve the aging resistance of SBS asphalt, of which HVM modifies the aging resistance best. Complex Modulus Aging Indicator (CMAI) and Storage Modulus Aging Indicator (SMAI) have the best correlation coefficients with CAI, and the two aging indicators can be used to predict the aging degree of polymer modified asphalt binders.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3780
Author(s):  
Jingyao Yang ◽  
Gang Xu ◽  
Peipei Kong ◽  
Xianhua Chen

With the growing interest in bituminous construction materials, desulfurized crumb rubber (CR)/styrene–butadiene–styrene (SBS) modified asphalts have been investigated by many researchers as low-cost environmental-friendly road construction materials. This study aimed to investigate the rheological properties of desulfurized CR/SBS composite modified asphalt within various temperature ranges. Bending beam rheometer (BBR), linear amplitude sweep (LAS), and multiple stress creep recovery (MSCR) tests were performed on conventional CR/SBS composite modified asphalt and five types of desulfurized CR/SBS modified asphalts. Meanwhile, Burgers’ model and the Kelvin–Voigt model were used to derive nonlinear viscoelastic parameters and analyze the viscoelastic mechanical behavior of the asphalts. The experimental results indicate that both the desulfurized CR/SBS composite modifier and force chemical reactor technique can enhance the crosslinking of CR and SBS copolymer, resulting in an improved high-, intermediate-, and low-temperature performance of desulfurized CR/SBS composite modified asphalt. Burgers’ model was found to be apposite in simulating the creep stages obtained from MSCR tests for CR/SBS composite modified asphalts. The superior high-temperature performance of desulfurized CR/SBS modified asphalt prepared with 4% SBS, 20% desulfurized rubber, and a force chemical reactor time of 45 min contributes to the good high-temperature elastic properties of the asphalt. Therefore, this combination is recommended as an optimal preparation process. In summary, the desulfurization of crumb rubber and using the force chemical reactor technique are beneficial to composite asphalt performance and can provide a new way of utilizing waste tire rubber.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


Sign in / Sign up

Export Citation Format

Share Document